Upload 47 files
Browse files- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/README.md +57 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/cpp/CMakeLists.txt +32 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/cpp/baboon.png +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/cpp/run_test.cpp +243 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/models/RRDB_ESRGAN_x4.pth +3 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/models/m_RRDB_esrgan_x4.pt +3 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin +3 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/LR/baboon.png +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/demo_qnn.py +84 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/README.md +47 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/cpp/CMakeLists.txt +32 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/cpp/baboon.png +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/cpp/run_test.cpp +243 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin +3 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/LR/baboon.png +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc +0 -0
- model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/demo_qnn.py +115 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/README.md +57 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/cpp/CMakeLists.txt +32 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/cpp/baboon.png +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/cpp/run_test.cpp +243 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/models/m_RRDB_esrgan_x4_fp16.qnn216.ctx.bin +3 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/LR/baboon.png +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/demo_qnn.py +115 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/README.md +57 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/cpp/CMakeLists.txt +32 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/cpp/baboon.png +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/cpp/run_test.cpp +243 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin +3 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/LR/baboon.png +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/demo_qnn.py +115 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/README.md +57 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/cpp/CMakeLists.txt +32 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/cpp/baboon.png +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/cpp/run_test.cpp +243 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin +3 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/LR/baboon.png +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc +0 -0
- model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/demo_qnn.py +115 -0
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
|
5 |
+
- Input shape: 128x128
|
6 |
+
- Number of parameters: 16.69M
|
7 |
+
- Model size: 63.8MB
|
8 |
+
- Output shape: 1x3x512x512
|
9 |
+
|
10 |
+
Source model repository: [ESRGAN](https://github.com/xinntao/ESRGAN/)
|
11 |
+
|
12 |
+
### Converted Model
|
13 |
+
|
14 |
+
- Precision: W8A16
|
15 |
+
- Backend: QNN2.16
|
16 |
+
- Target Device: FV01 QCS6490
|
17 |
+
|
18 |
+
## Inference with AidLite SDK
|
19 |
+
|
20 |
+
### SDK installation
|
21 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
22 |
+
|
23 |
+
- install AidLite SDK
|
24 |
+
|
25 |
+
```bash
|
26 |
+
# Install the appropriate version of the aidlite sdk
|
27 |
+
sudo aid-pkg update
|
28 |
+
sudo aid-pkg install aidlite-sdk
|
29 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
30 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
31 |
+
```
|
32 |
+
|
33 |
+
- Verify AidLite SDK
|
34 |
+
|
35 |
+
```bash
|
36 |
+
# aidlite sdk c++ check
|
37 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
38 |
+
|
39 |
+
# aidlite sdk python check
|
40 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
41 |
+
```
|
42 |
+
|
43 |
+
### Run demo
|
44 |
+
#### python
|
45 |
+
```bash
|
46 |
+
cd python
|
47 |
+
python3 demo_qnn.py
|
48 |
+
```
|
49 |
+
|
50 |
+
#### c++
|
51 |
+
```bash
|
52 |
+
cd esrgan/model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/cpp
|
53 |
+
mkdir build && cd build
|
54 |
+
cmake ..
|
55 |
+
make
|
56 |
+
./run_test
|
57 |
+
```
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/cpp/CMakeLists.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required (VERSION 3.5)
|
2 |
+
project("run_test")
|
3 |
+
|
4 |
+
find_package(OpenCV REQUIRED)
|
5 |
+
|
6 |
+
message(STATUS "oPENCV Library status:")
|
7 |
+
message(STATUS ">version:${OpenCV_VERSION}")
|
8 |
+
message(STATUS "Include:${OpenCV_INCLUDE_DIRS}")
|
9 |
+
|
10 |
+
set(CMAKE_CXX_FLAGS "-Wno-error=deprecated-declarations -Wno-deprecated-declarations")
|
11 |
+
|
12 |
+
include_directories(
|
13 |
+
/usr/local/include
|
14 |
+
/usr/include/opencv4
|
15 |
+
)
|
16 |
+
|
17 |
+
link_directories(
|
18 |
+
/usr/local/lib/
|
19 |
+
)
|
20 |
+
|
21 |
+
file(GLOB SRC_LISTS
|
22 |
+
${CMAKE_CURRENT_SOURCE_DIR}/run_test.cpp
|
23 |
+
)
|
24 |
+
|
25 |
+
add_executable(run_test ${SRC_LISTS})
|
26 |
+
|
27 |
+
target_link_libraries(run_test
|
28 |
+
aidlite
|
29 |
+
${OpenCV_LIBS}
|
30 |
+
pthread
|
31 |
+
jsoncpp
|
32 |
+
)
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/cpp/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/cpp/run_test.cpp
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <iostream>
|
2 |
+
#include <fstream>
|
3 |
+
#include <opencv2/opencv.hpp>
|
4 |
+
#include <aidlux/aidlite/aidlite.hpp>
|
5 |
+
#include <vector>
|
6 |
+
#include <numeric>
|
7 |
+
#include <cmath>
|
8 |
+
#include <jsoncpp/json/json.h>
|
9 |
+
|
10 |
+
using namespace cv;
|
11 |
+
using namespace std;
|
12 |
+
using namespace Aidlux::Aidlite;
|
13 |
+
|
14 |
+
|
15 |
+
struct Args {
|
16 |
+
std::string target_model = "../../models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin";
|
17 |
+
std::string imgs = "../baboon.png";
|
18 |
+
int invoke_nums = 10;
|
19 |
+
std::string model_type = "QNN";
|
20 |
+
};
|
21 |
+
|
22 |
+
|
23 |
+
Args parse_args(int argc, char* argv[]) {
|
24 |
+
Args args;
|
25 |
+
for (int i = 1; i < argc; ++i) {
|
26 |
+
std::string arg = argv[i];
|
27 |
+
if (arg == "--target_model" && i + 1 < argc) {
|
28 |
+
args.target_model = argv[++i];
|
29 |
+
} else if (arg == "--imgs" && i + 1 < argc) {
|
30 |
+
args.imgs = argv[++i];
|
31 |
+
} else if (arg == "--invoke_nums" && i + 1 < argc) {
|
32 |
+
args.invoke_nums = std::stoi(argv[++i]);
|
33 |
+
} else if (arg == "--model_type" && i + 1 < argc) {
|
34 |
+
args.model_type = argv[++i];
|
35 |
+
}
|
36 |
+
}
|
37 |
+
return args;
|
38 |
+
}
|
39 |
+
|
40 |
+
std::string to_lower(const std::string& str) {
|
41 |
+
std::string lower_str = str;
|
42 |
+
std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), [](unsigned char c) {
|
43 |
+
return std::tolower(c);
|
44 |
+
});
|
45 |
+
return lower_str;
|
46 |
+
}
|
47 |
+
|
48 |
+
int transpose(float* src, unsigned int* src_dims, unsigned int* tsp_dims, float* dest){
|
49 |
+
|
50 |
+
int current_coordinate[4] = {0, 0, 0, 0};
|
51 |
+
for(int a = 0; a < src_dims[0]; ++a){
|
52 |
+
current_coordinate[0] = a;
|
53 |
+
for(int b = 0; b < src_dims[1]; ++b){
|
54 |
+
current_coordinate[1] = b;
|
55 |
+
for(int c = 0; c < src_dims[2]; ++c){
|
56 |
+
current_coordinate[2] = c;
|
57 |
+
for(int d = 0; d < src_dims[3]; ++d){
|
58 |
+
current_coordinate[3] = d;
|
59 |
+
|
60 |
+
int old_index = current_coordinate[0]*src_dims[1]*src_dims[2]*src_dims[3] +
|
61 |
+
current_coordinate[1]*src_dims[2]*src_dims[3] +
|
62 |
+
current_coordinate[2]*src_dims[3] +
|
63 |
+
current_coordinate[3];
|
64 |
+
|
65 |
+
int new_index = current_coordinate[tsp_dims[0]]*src_dims[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
66 |
+
current_coordinate[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
67 |
+
current_coordinate[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
68 |
+
current_coordinate[tsp_dims[3]];
|
69 |
+
|
70 |
+
dest[new_index] = src[old_index];
|
71 |
+
}
|
72 |
+
}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
return EXIT_SUCCESS;
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
void save_output_image_from_nhwc(float* output) {
|
81 |
+
unsigned int H = 512;
|
82 |
+
unsigned int W = 512;
|
83 |
+
unsigned int C = 3;
|
84 |
+
// Step 1: clip [0,1]
|
85 |
+
std::vector<float> clipped(H * W * C);
|
86 |
+
for (int i = 0; i < H * W * C; ++i) {
|
87 |
+
clipped[i] = std::min(1.0f, std::max(0.0f, output[i]));
|
88 |
+
}
|
89 |
+
|
90 |
+
// Step 2: NHWC (H,W,C) to CHW (C,H,W)
|
91 |
+
unsigned int src_dims1[4] = {H, W, C, 1};
|
92 |
+
unsigned int tsp_dims1[4] = {2, 0, 1, 3};
|
93 |
+
std::vector<float> chw(C * H * W);
|
94 |
+
transpose(clipped.data(), src_dims1, tsp_dims1, chw.data());
|
95 |
+
|
96 |
+
// Step 3: RGB to BGR
|
97 |
+
std::vector<float> chw_bgr(C * H * W);
|
98 |
+
for (int h = 0; h < H; ++h) {
|
99 |
+
for (int w = 0; w < W; ++w) {
|
100 |
+
for (int c = 0; c < C; ++c) {
|
101 |
+
int src_index = c * H * W + h * W + w;
|
102 |
+
int dst_c = 2 - c;
|
103 |
+
int dst_index = dst_c * H * W + h * W + w;
|
104 |
+
chw_bgr[dst_index] = chw[src_index];
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
// Step 4: CHW to HWC
|
110 |
+
unsigned int src_dims2[4] = {C, H, W, 1};
|
111 |
+
unsigned int tsp_dims2[4] = {1, 2, 0, 3};
|
112 |
+
std::vector<float> hwc(H * W * C);
|
113 |
+
transpose(chw_bgr.data(), src_dims2, tsp_dims2, hwc.data());
|
114 |
+
|
115 |
+
// Step 5: Convert to CV_8UC3 image
|
116 |
+
cv::Mat result(H, W, CV_8UC3);
|
117 |
+
for (int y = 0; y < H; ++y) {
|
118 |
+
for (int x = 0; x < W; ++x) {
|
119 |
+
int idx = (y * W + x) * C;
|
120 |
+
uchar b = static_cast<uchar>(std::round(hwc[idx + 0] * 255.0f));
|
121 |
+
uchar g = static_cast<uchar>(std::round(hwc[idx + 1] * 255.0f));
|
122 |
+
uchar r = static_cast<uchar>(std::round(hwc[idx + 2] * 255.0f));
|
123 |
+
result.at<cv::Vec3b>(y, x) = cv::Vec3b(b, g, r);
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
// Save the image
|
128 |
+
cv::imwrite("./result_img.jpg", result);
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
int invoke(const Args& args) {
|
133 |
+
std::cout << "Start main ... ... Model Path: " << args.target_model << "\n"
|
134 |
+
<< "Image Path: " << args.imgs << "\n"
|
135 |
+
<< "Inference Nums: " << args.invoke_nums << "\n"
|
136 |
+
<< "Model Type: " << args.model_type << "\n";
|
137 |
+
Model* model = Model::create_instance(args.target_model);
|
138 |
+
if(model == nullptr){
|
139 |
+
printf("Create model failed !\n");
|
140 |
+
return EXIT_FAILURE;
|
141 |
+
}
|
142 |
+
Config* config = Config::create_instance();
|
143 |
+
if(config == nullptr){
|
144 |
+
printf("Create config failed !\n");
|
145 |
+
return EXIT_FAILURE;
|
146 |
+
}
|
147 |
+
config->implement_type = ImplementType::TYPE_LOCAL;
|
148 |
+
std::string model_type_lower = to_lower(args.model_type);
|
149 |
+
if (model_type_lower == "qnn"){
|
150 |
+
config->framework_type = FrameworkType::TYPE_QNN;
|
151 |
+
} else if (model_type_lower == "snpe2" || model_type_lower == "snpe") {
|
152 |
+
config->framework_type = FrameworkType::TYPE_SNPE2;
|
153 |
+
}
|
154 |
+
config->accelerate_type = AccelerateType::TYPE_DSP;
|
155 |
+
config->is_quantify_model = 1;
|
156 |
+
|
157 |
+
unsigned int model_h = 128;
|
158 |
+
unsigned int model_w = 128;
|
159 |
+
std::vector<std::vector<uint32_t>> input_shapes = {{1,model_h,model_w,3}};
|
160 |
+
std::vector<std::vector<uint32_t>> output_shapes = {{1,3,model_h*4,model_w*4}};
|
161 |
+
model->set_model_properties(input_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32, output_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32);
|
162 |
+
std::unique_ptr<Interpreter> fast_interpreter = InterpreterBuilder::build_interpretper_from_model_and_config(model, config);
|
163 |
+
if(fast_interpreter == nullptr){
|
164 |
+
printf("build_interpretper_from_model_and_config failed !\n");
|
165 |
+
return EXIT_FAILURE;
|
166 |
+
}
|
167 |
+
int result = fast_interpreter->init();
|
168 |
+
if(result != EXIT_SUCCESS){
|
169 |
+
printf("interpreter->init() failed !\n");
|
170 |
+
return EXIT_FAILURE;
|
171 |
+
}
|
172 |
+
// load model
|
173 |
+
fast_interpreter->load_model();
|
174 |
+
if(result != EXIT_SUCCESS){
|
175 |
+
printf("interpreter->load_model() failed !\n");
|
176 |
+
return EXIT_FAILURE;
|
177 |
+
}
|
178 |
+
printf("detect model load success!\n");
|
179 |
+
|
180 |
+
cv::Mat frame = cv::imread(args.imgs);
|
181 |
+
if (frame.empty()) {
|
182 |
+
printf("detect image load failed!\n");
|
183 |
+
return 1;
|
184 |
+
}
|
185 |
+
printf("img_src cols: %d, img_src rows: %d\n", frame.cols, frame.rows);
|
186 |
+
cv::Mat input_data;
|
187 |
+
cv::Mat frame_clone = frame.clone();
|
188 |
+
cv::cvtColor(frame_clone, frame_clone, cv::COLOR_BGR2RGB);
|
189 |
+
cv::resize(frame_clone, frame_clone, cv::Size(model_w, model_h));
|
190 |
+
frame_clone.convertTo(input_data, CV_32FC3, 1.0 / 255.0);
|
191 |
+
|
192 |
+
float *outdata0 = nullptr;
|
193 |
+
std::vector<float> invoke_time;
|
194 |
+
for (int i = 0; i < args.invoke_nums; ++i) {
|
195 |
+
result = fast_interpreter->set_input_tensor(0, input_data.data);
|
196 |
+
if(result != EXIT_SUCCESS){
|
197 |
+
printf("interpreter->set_input_tensor() failed !\n");
|
198 |
+
return EXIT_FAILURE;
|
199 |
+
}
|
200 |
+
auto t1 = std::chrono::high_resolution_clock::now();
|
201 |
+
result = fast_interpreter->invoke();
|
202 |
+
auto t2 = std::chrono::high_resolution_clock::now();
|
203 |
+
std::chrono::duration<double> cost_time = t2 - t1;
|
204 |
+
invoke_time.push_back(cost_time.count() * 1000);
|
205 |
+
if(result != EXIT_SUCCESS){
|
206 |
+
printf("interpreter->invoke() failed !\n");
|
207 |
+
return EXIT_FAILURE;
|
208 |
+
}
|
209 |
+
uint32_t out_data_0 = 0;
|
210 |
+
result = fast_interpreter->get_output_tensor(0, (void**)&outdata0, &out_data_0);
|
211 |
+
if(result != EXIT_SUCCESS){
|
212 |
+
printf("interpreter->get_output_tensor() 1 failed !\n");
|
213 |
+
return EXIT_FAILURE;
|
214 |
+
}
|
215 |
+
|
216 |
+
}
|
217 |
+
|
218 |
+
float max_invoke_time = *std::max_element(invoke_time.begin(), invoke_time.end());
|
219 |
+
float min_invoke_time = *std::min_element(invoke_time.begin(), invoke_time.end());
|
220 |
+
float mean_invoke_time = std::accumulate(invoke_time.begin(), invoke_time.end(), 0.0f) / args.invoke_nums;
|
221 |
+
float var_invoketime = 0.0f;
|
222 |
+
for (auto time : invoke_time) {
|
223 |
+
var_invoketime += (time - mean_invoke_time) * (time - mean_invoke_time);
|
224 |
+
}
|
225 |
+
var_invoketime /= args.invoke_nums;
|
226 |
+
printf("=======================================\n");
|
227 |
+
printf("QNN inference %d times :\n --mean_invoke_time is %f \n --max_invoke_time is %f \n --min_invoke_time is %f \n --var_invoketime is %f\n",
|
228 |
+
args.invoke_nums, mean_invoke_time, max_invoke_time, min_invoke_time, var_invoketime);
|
229 |
+
printf("=======================================\n");
|
230 |
+
|
231 |
+
// post process
|
232 |
+
save_output_image_from_nhwc(outdata0);
|
233 |
+
|
234 |
+
|
235 |
+
fast_interpreter->destory();
|
236 |
+
return 0;
|
237 |
+
}
|
238 |
+
|
239 |
+
|
240 |
+
int main(int argc, char* argv[]) {
|
241 |
+
Args args = parse_args(argc, argv);
|
242 |
+
return invoke(args);
|
243 |
+
}
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/models/RRDB_ESRGAN_x4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65fece06e1ccb48853242aa972bdf00ad07a7dd8938d2dcbdf4221b59f6372ce
|
3 |
+
size 66929193
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/models/m_RRDB_esrgan_x4.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:018ab32fd56641b382fa572180f0679cebbaef868885d2a1e626ee5a4453f542
|
3 |
+
size 67935783
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e254667574187295e925096f5c6386ef638cf5e79207329f83edbe44f485bdcd
|
3 |
+
size 25100616
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/LR/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc
ADDED
Binary file (3.2 kB). View file
|
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc
ADDED
Binary file (3.22 kB). View file
|
|
model_farm_esrgan_qcs6490_qnn2.16_int16_aidlite/python/demo_qnn.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import glob
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
# import torch
|
6 |
+
import time
|
7 |
+
import aidlite
|
8 |
+
import os
|
9 |
+
|
10 |
+
class esrganQnn:
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
self.model = aidlite.Model.create_instance(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin"))
|
14 |
+
if self.model is None:
|
15 |
+
print("Create model failed !")
|
16 |
+
return
|
17 |
+
|
18 |
+
self.config = aidlite.Config.create_instance()
|
19 |
+
if self.config is None:
|
20 |
+
print("build_interpretper_from_model_and_config failed !")
|
21 |
+
return
|
22 |
+
|
23 |
+
self.config.implement_type = aidlite.ImplementType.TYPE_LOCAL
|
24 |
+
self.config.framework_type = aidlite.FrameworkType.TYPE_QNN
|
25 |
+
|
26 |
+
self.config.accelerate_type = aidlite.AccelerateType.TYPE_DSP
|
27 |
+
self.config.is_quantify_model = 1
|
28 |
+
|
29 |
+
self.interpreter = aidlite.InterpreterBuilder.build_interpretper_from_model_and_config(self.model, self.config)
|
30 |
+
if self.interpreter is None:
|
31 |
+
print("build_interpretper_from_model_and_config failed !")
|
32 |
+
return
|
33 |
+
input_shapes = [[1, 128, 128,3]]
|
34 |
+
# input_shapes = [[1,3, 128, 128]]
|
35 |
+
output_shapes = [[1, 3,128*4,128*4]]
|
36 |
+
self.model.set_model_properties(input_shapes, aidlite.DataType.TYPE_FLOAT32,
|
37 |
+
output_shapes, aidlite.DataType.TYPE_FLOAT32)
|
38 |
+
|
39 |
+
if self.interpreter is None:
|
40 |
+
print("build_interpretper_from_model_and_config failed !")
|
41 |
+
result = self.interpreter.init()
|
42 |
+
if result != 0:
|
43 |
+
print(f"interpreter init failed !")
|
44 |
+
result = self.interpreter.load_model()
|
45 |
+
if result != 0:
|
46 |
+
print("interpreter load model failed !")
|
47 |
+
|
48 |
+
print(" model load success!")
|
49 |
+
|
50 |
+
def __call__(self, input):
|
51 |
+
self.interpreter.set_input_tensor(0,input)
|
52 |
+
self.interpreter.invoke()
|
53 |
+
features_0 = self.interpreter.get_output_tensor(0).reshape(1, 128*4,128*4,3).copy()
|
54 |
+
|
55 |
+
return features_0
|
56 |
+
|
57 |
+
|
58 |
+
esrgan_model= esrganQnn()
|
59 |
+
|
60 |
+
test_img_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'LR/*')
|
61 |
+
|
62 |
+
idx = 0
|
63 |
+
for path in glob.glob(test_img_folder):
|
64 |
+
idx += 1
|
65 |
+
base = osp.splitext(osp.basename(path))[0]
|
66 |
+
print(idx, base)
|
67 |
+
# read images
|
68 |
+
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
69 |
+
img = cv2.resize(img, (128,128))
|
70 |
+
img = img * 1.0 / 255
|
71 |
+
img = img[:, :, [2, 1, 0]]
|
72 |
+
img_LR = np.expand_dims(img,axis=0).astype(np.float32)
|
73 |
+
|
74 |
+
t0 = time.time()
|
75 |
+
output = esrgan_model(img_LR) #.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
76 |
+
output = np.clip(output[0], 0, 1)
|
77 |
+
output = np.transpose(output, (2, 0, 1))
|
78 |
+
use_time = round((time.time() - t0) * 1000, 2)
|
79 |
+
print(f"Inference_time:{use_time} ms")
|
80 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
81 |
+
output = (output * 255.0).round()
|
82 |
+
cv2.imwrite(os.path.join(os.path.dirname(os.path.abspath(__file__)),'results/{:s}_rlt_16qnn.png'.format(base)), output)
|
83 |
+
print("ok")
|
84 |
+
esrgan_model.interpreter.destory()
|
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
|
5 |
+
- Input shape: 128x128
|
6 |
+
- Number of parameters: 16.69M
|
7 |
+
- Model size: 63.8MB
|
8 |
+
- Output shape: 1x3x512x512
|
9 |
+
|
10 |
+
Source model repository: [ESRGAN](https://github.com/xinntao/ESRGAN/)
|
11 |
+
|
12 |
+
### Converted Model
|
13 |
+
|
14 |
+
- Precision: INT8
|
15 |
+
- Backend: QNN2.16
|
16 |
+
- Target Device: FV01 QCS6490
|
17 |
+
|
18 |
+
## Inference with AidLite SDK
|
19 |
+
|
20 |
+
### SDK installation
|
21 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
22 |
+
|
23 |
+
- install AidLite SDK
|
24 |
+
|
25 |
+
```bash
|
26 |
+
# Install the appropriate version of the aidlite sdk
|
27 |
+
sudo aid-pkg update
|
28 |
+
sudo aid-pkg install aidlite-sdk
|
29 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
30 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
31 |
+
```
|
32 |
+
|
33 |
+
- Verify AidLite SDK
|
34 |
+
|
35 |
+
```bash
|
36 |
+
# aidlite sdk c++ check
|
37 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
38 |
+
|
39 |
+
# aidlite sdk python check
|
40 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
41 |
+
```
|
42 |
+
|
43 |
+
### Run demo
|
44 |
+
```bash
|
45 |
+
cd python
|
46 |
+
python3 demo_qnn.py
|
47 |
+
```
|
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/cpp/CMakeLists.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required (VERSION 3.5)
|
2 |
+
project("run_test")
|
3 |
+
|
4 |
+
find_package(OpenCV REQUIRED)
|
5 |
+
|
6 |
+
message(STATUS "oPENCV Library status:")
|
7 |
+
message(STATUS ">version:${OpenCV_VERSION}")
|
8 |
+
message(STATUS "Include:${OpenCV_INCLUDE_DIRS}")
|
9 |
+
|
10 |
+
set(CMAKE_CXX_FLAGS "-Wno-error=deprecated-declarations -Wno-deprecated-declarations")
|
11 |
+
|
12 |
+
include_directories(
|
13 |
+
/usr/local/include
|
14 |
+
/usr/include/opencv4
|
15 |
+
)
|
16 |
+
|
17 |
+
link_directories(
|
18 |
+
/usr/local/lib/
|
19 |
+
)
|
20 |
+
|
21 |
+
file(GLOB SRC_LISTS
|
22 |
+
${CMAKE_CURRENT_SOURCE_DIR}/run_test.cpp
|
23 |
+
)
|
24 |
+
|
25 |
+
add_executable(run_test ${SRC_LISTS})
|
26 |
+
|
27 |
+
target_link_libraries(run_test
|
28 |
+
aidlite
|
29 |
+
${OpenCV_LIBS}
|
30 |
+
pthread
|
31 |
+
jsoncpp
|
32 |
+
)
|
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/cpp/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/cpp/run_test.cpp
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <iostream>
|
2 |
+
#include <fstream>
|
3 |
+
#include <opencv2/opencv.hpp>
|
4 |
+
#include <aidlux/aidlite/aidlite.hpp>
|
5 |
+
#include <vector>
|
6 |
+
#include <numeric>
|
7 |
+
#include <cmath>
|
8 |
+
#include <jsoncpp/json/json.h>
|
9 |
+
|
10 |
+
using namespace cv;
|
11 |
+
using namespace std;
|
12 |
+
using namespace Aidlux::Aidlite;
|
13 |
+
|
14 |
+
|
15 |
+
struct Args {
|
16 |
+
std::string target_model = "../../models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin";
|
17 |
+
std::string imgs = "../baboon.png";
|
18 |
+
int invoke_nums = 10;
|
19 |
+
std::string model_type = "QNN";
|
20 |
+
};
|
21 |
+
|
22 |
+
|
23 |
+
Args parse_args(int argc, char* argv[]) {
|
24 |
+
Args args;
|
25 |
+
for (int i = 1; i < argc; ++i) {
|
26 |
+
std::string arg = argv[i];
|
27 |
+
if (arg == "--target_model" && i + 1 < argc) {
|
28 |
+
args.target_model = argv[++i];
|
29 |
+
} else if (arg == "--imgs" && i + 1 < argc) {
|
30 |
+
args.imgs = argv[++i];
|
31 |
+
} else if (arg == "--invoke_nums" && i + 1 < argc) {
|
32 |
+
args.invoke_nums = std::stoi(argv[++i]);
|
33 |
+
} else if (arg == "--model_type" && i + 1 < argc) {
|
34 |
+
args.model_type = argv[++i];
|
35 |
+
}
|
36 |
+
}
|
37 |
+
return args;
|
38 |
+
}
|
39 |
+
|
40 |
+
std::string to_lower(const std::string& str) {
|
41 |
+
std::string lower_str = str;
|
42 |
+
std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), [](unsigned char c) {
|
43 |
+
return std::tolower(c);
|
44 |
+
});
|
45 |
+
return lower_str;
|
46 |
+
}
|
47 |
+
|
48 |
+
int transpose(float* src, unsigned int* src_dims, unsigned int* tsp_dims, float* dest){
|
49 |
+
|
50 |
+
int current_coordinate[4] = {0, 0, 0, 0};
|
51 |
+
for(int a = 0; a < src_dims[0]; ++a){
|
52 |
+
current_coordinate[0] = a;
|
53 |
+
for(int b = 0; b < src_dims[1]; ++b){
|
54 |
+
current_coordinate[1] = b;
|
55 |
+
for(int c = 0; c < src_dims[2]; ++c){
|
56 |
+
current_coordinate[2] = c;
|
57 |
+
for(int d = 0; d < src_dims[3]; ++d){
|
58 |
+
current_coordinate[3] = d;
|
59 |
+
|
60 |
+
int old_index = current_coordinate[0]*src_dims[1]*src_dims[2]*src_dims[3] +
|
61 |
+
current_coordinate[1]*src_dims[2]*src_dims[3] +
|
62 |
+
current_coordinate[2]*src_dims[3] +
|
63 |
+
current_coordinate[3];
|
64 |
+
|
65 |
+
int new_index = current_coordinate[tsp_dims[0]]*src_dims[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
66 |
+
current_coordinate[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
67 |
+
current_coordinate[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
68 |
+
current_coordinate[tsp_dims[3]];
|
69 |
+
|
70 |
+
dest[new_index] = src[old_index];
|
71 |
+
}
|
72 |
+
}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
return EXIT_SUCCESS;
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
void save_output_image_from_nhwc(float* output) {
|
81 |
+
unsigned int H = 512;
|
82 |
+
unsigned int W = 512;
|
83 |
+
unsigned int C = 3;
|
84 |
+
// Step 1: clip [0,1]
|
85 |
+
std::vector<float> clipped(H * W * C);
|
86 |
+
for (int i = 0; i < H * W * C; ++i) {
|
87 |
+
clipped[i] = std::min(1.0f, std::max(0.0f, output[i]));
|
88 |
+
}
|
89 |
+
|
90 |
+
// Step 2: NHWC (H,W,C) to CHW (C,H,W)
|
91 |
+
unsigned int src_dims1[4] = {H, W, C, 1};
|
92 |
+
unsigned int tsp_dims1[4] = {2, 0, 1, 3};
|
93 |
+
std::vector<float> chw(C * H * W);
|
94 |
+
transpose(clipped.data(), src_dims1, tsp_dims1, chw.data());
|
95 |
+
|
96 |
+
// Step 3: RGB to BGR
|
97 |
+
std::vector<float> chw_bgr(C * H * W);
|
98 |
+
for (int h = 0; h < H; ++h) {
|
99 |
+
for (int w = 0; w < W; ++w) {
|
100 |
+
for (int c = 0; c < C; ++c) {
|
101 |
+
int src_index = c * H * W + h * W + w;
|
102 |
+
int dst_c = 2 - c;
|
103 |
+
int dst_index = dst_c * H * W + h * W + w;
|
104 |
+
chw_bgr[dst_index] = chw[src_index];
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
// Step 4: CHW to HWC
|
110 |
+
unsigned int src_dims2[4] = {C, H, W, 1};
|
111 |
+
unsigned int tsp_dims2[4] = {1, 2, 0, 3};
|
112 |
+
std::vector<float> hwc(H * W * C);
|
113 |
+
transpose(chw_bgr.data(), src_dims2, tsp_dims2, hwc.data());
|
114 |
+
|
115 |
+
// Step 5: Convert to CV_8UC3 image
|
116 |
+
cv::Mat result(H, W, CV_8UC3);
|
117 |
+
for (int y = 0; y < H; ++y) {
|
118 |
+
for (int x = 0; x < W; ++x) {
|
119 |
+
int idx = (y * W + x) * C;
|
120 |
+
uchar b = static_cast<uchar>(std::round(hwc[idx + 0] * 255.0f));
|
121 |
+
uchar g = static_cast<uchar>(std::round(hwc[idx + 1] * 255.0f));
|
122 |
+
uchar r = static_cast<uchar>(std::round(hwc[idx + 2] * 255.0f));
|
123 |
+
result.at<cv::Vec3b>(y, x) = cv::Vec3b(b, g, r);
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
// Save the image
|
128 |
+
cv::imwrite("./result_img.jpg", result);
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
int invoke(const Args& args) {
|
133 |
+
std::cout << "Start main ... ... Model Path: " << args.target_model << "\n"
|
134 |
+
<< "Image Path: " << args.imgs << "\n"
|
135 |
+
<< "Inference Nums: " << args.invoke_nums << "\n"
|
136 |
+
<< "Model Type: " << args.model_type << "\n";
|
137 |
+
Model* model = Model::create_instance(args.target_model);
|
138 |
+
if(model == nullptr){
|
139 |
+
printf("Create model failed !\n");
|
140 |
+
return EXIT_FAILURE;
|
141 |
+
}
|
142 |
+
Config* config = Config::create_instance();
|
143 |
+
if(config == nullptr){
|
144 |
+
printf("Create config failed !\n");
|
145 |
+
return EXIT_FAILURE;
|
146 |
+
}
|
147 |
+
config->implement_type = ImplementType::TYPE_LOCAL;
|
148 |
+
std::string model_type_lower = to_lower(args.model_type);
|
149 |
+
if (model_type_lower == "qnn"){
|
150 |
+
config->framework_type = FrameworkType::TYPE_QNN;
|
151 |
+
} else if (model_type_lower == "snpe2" || model_type_lower == "snpe") {
|
152 |
+
config->framework_type = FrameworkType::TYPE_SNPE2;
|
153 |
+
}
|
154 |
+
config->accelerate_type = AccelerateType::TYPE_DSP;
|
155 |
+
config->is_quantify_model = 1;
|
156 |
+
|
157 |
+
unsigned int model_h = 128;
|
158 |
+
unsigned int model_w = 128;
|
159 |
+
std::vector<std::vector<uint32_t>> input_shapes = {{1,model_h,model_w,3}};
|
160 |
+
std::vector<std::vector<uint32_t>> output_shapes = {{1,3,model_h*4,model_w*4}};
|
161 |
+
model->set_model_properties(input_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32, output_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32);
|
162 |
+
std::unique_ptr<Interpreter> fast_interpreter = InterpreterBuilder::build_interpretper_from_model_and_config(model, config);
|
163 |
+
if(fast_interpreter == nullptr){
|
164 |
+
printf("build_interpretper_from_model_and_config failed !\n");
|
165 |
+
return EXIT_FAILURE;
|
166 |
+
}
|
167 |
+
int result = fast_interpreter->init();
|
168 |
+
if(result != EXIT_SUCCESS){
|
169 |
+
printf("interpreter->init() failed !\n");
|
170 |
+
return EXIT_FAILURE;
|
171 |
+
}
|
172 |
+
// load model
|
173 |
+
fast_interpreter->load_model();
|
174 |
+
if(result != EXIT_SUCCESS){
|
175 |
+
printf("interpreter->load_model() failed !\n");
|
176 |
+
return EXIT_FAILURE;
|
177 |
+
}
|
178 |
+
printf("detect model load success!\n");
|
179 |
+
|
180 |
+
cv::Mat frame = cv::imread(args.imgs);
|
181 |
+
if (frame.empty()) {
|
182 |
+
printf("detect image load failed!\n");
|
183 |
+
return 1;
|
184 |
+
}
|
185 |
+
printf("img_src cols: %d, img_src rows: %d\n", frame.cols, frame.rows);
|
186 |
+
cv::Mat input_data;
|
187 |
+
cv::Mat frame_clone = frame.clone();
|
188 |
+
cv::cvtColor(frame_clone, frame_clone, cv::COLOR_BGR2RGB);
|
189 |
+
cv::resize(frame_clone, frame_clone, cv::Size(model_w, model_h));
|
190 |
+
frame_clone.convertTo(input_data, CV_32FC3, 1.0 / 255.0);
|
191 |
+
|
192 |
+
float *outdata0 = nullptr;
|
193 |
+
std::vector<float> invoke_time;
|
194 |
+
for (int i = 0; i < args.invoke_nums; ++i) {
|
195 |
+
result = fast_interpreter->set_input_tensor(0, input_data.data);
|
196 |
+
if(result != EXIT_SUCCESS){
|
197 |
+
printf("interpreter->set_input_tensor() failed !\n");
|
198 |
+
return EXIT_FAILURE;
|
199 |
+
}
|
200 |
+
auto t1 = std::chrono::high_resolution_clock::now();
|
201 |
+
result = fast_interpreter->invoke();
|
202 |
+
auto t2 = std::chrono::high_resolution_clock::now();
|
203 |
+
std::chrono::duration<double> cost_time = t2 - t1;
|
204 |
+
invoke_time.push_back(cost_time.count() * 1000);
|
205 |
+
if(result != EXIT_SUCCESS){
|
206 |
+
printf("interpreter->invoke() failed !\n");
|
207 |
+
return EXIT_FAILURE;
|
208 |
+
}
|
209 |
+
uint32_t out_data_0 = 0;
|
210 |
+
result = fast_interpreter->get_output_tensor(0, (void**)&outdata0, &out_data_0);
|
211 |
+
if(result != EXIT_SUCCESS){
|
212 |
+
printf("interpreter->get_output_tensor() 1 failed !\n");
|
213 |
+
return EXIT_FAILURE;
|
214 |
+
}
|
215 |
+
|
216 |
+
}
|
217 |
+
|
218 |
+
float max_invoke_time = *std::max_element(invoke_time.begin(), invoke_time.end());
|
219 |
+
float min_invoke_time = *std::min_element(invoke_time.begin(), invoke_time.end());
|
220 |
+
float mean_invoke_time = std::accumulate(invoke_time.begin(), invoke_time.end(), 0.0f) / args.invoke_nums;
|
221 |
+
float var_invoketime = 0.0f;
|
222 |
+
for (auto time : invoke_time) {
|
223 |
+
var_invoketime += (time - mean_invoke_time) * (time - mean_invoke_time);
|
224 |
+
}
|
225 |
+
var_invoketime /= args.invoke_nums;
|
226 |
+
printf("=======================================\n");
|
227 |
+
printf("QNN inference %d times :\n --mean_invoke_time is %f \n --max_invoke_time is %f \n --min_invoke_time is %f \n --var_invoketime is %f\n",
|
228 |
+
args.invoke_nums, mean_invoke_time, max_invoke_time, min_invoke_time, var_invoketime);
|
229 |
+
printf("=======================================\n");
|
230 |
+
|
231 |
+
// post process
|
232 |
+
save_output_image_from_nhwc(outdata0);
|
233 |
+
|
234 |
+
|
235 |
+
fast_interpreter->destory();
|
236 |
+
return 0;
|
237 |
+
}
|
238 |
+
|
239 |
+
|
240 |
+
int main(int argc, char* argv[]) {
|
241 |
+
Args args = parse_args(argc, argv);
|
242 |
+
return invoke(args);
|
243 |
+
}
|
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6e06342bfa355de053db65b7563b4b6417b5cba6c45aa0a4f09b4e5d795a4e3
|
3 |
+
size 22131016
|
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/LR/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc
ADDED
Binary file (3.2 kB). View file
|
|
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc
ADDED
Binary file (3.22 kB). View file
|
|
model_farm_esrgan_qcs6490_qnn2.16_int8_aidlite/python/demo_qnn.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import glob
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
import aidlite
|
8 |
+
import os
|
9 |
+
|
10 |
+
class esrganQnn:
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
self.model = aidlite.Model.create_instance(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin"))
|
14 |
+
if self.model is None:
|
15 |
+
print("Create model failed !")
|
16 |
+
return
|
17 |
+
|
18 |
+
self.config = aidlite.Config.create_instance()
|
19 |
+
if self.config is None:
|
20 |
+
print("build_interpretper_from_model_and_config failed !")
|
21 |
+
return
|
22 |
+
|
23 |
+
self.config.implement_type = aidlite.ImplementType.TYPE_LOCAL
|
24 |
+
self.config.framework_type = aidlite.FrameworkType.TYPE_QNN
|
25 |
+
|
26 |
+
self.config.accelerate_type = aidlite.AccelerateType.TYPE_DSP
|
27 |
+
self.config.is_quantify_model = 1
|
28 |
+
|
29 |
+
self.interpreter = aidlite.InterpreterBuilder.build_interpretper_from_model_and_config(self.model, self.config)
|
30 |
+
if self.interpreter is None:
|
31 |
+
print("build_interpretper_from_model_and_config failed !")
|
32 |
+
return
|
33 |
+
input_shapes = [[1, 128, 128,3]]
|
34 |
+
# input_shapes = [[1,3, 128, 128]]
|
35 |
+
output_shapes = [[1, 3,128*4,128*4]]
|
36 |
+
self.model.set_model_properties(input_shapes, aidlite.DataType.TYPE_FLOAT32,
|
37 |
+
output_shapes, aidlite.DataType.TYPE_FLOAT32)
|
38 |
+
|
39 |
+
if self.interpreter is None:
|
40 |
+
print("build_interpretper_from_model_and_config failed !")
|
41 |
+
result = self.interpreter.init()
|
42 |
+
if result != 0:
|
43 |
+
print(f"interpreter init failed !")
|
44 |
+
result = self.interpreter.load_model()
|
45 |
+
if result != 0:
|
46 |
+
print("interpreter load model failed !")
|
47 |
+
|
48 |
+
print(" model load success!")
|
49 |
+
|
50 |
+
def __call__(self, input):
|
51 |
+
self.interpreter.set_input_tensor(0,input)
|
52 |
+
invoke_time=[]
|
53 |
+
invoke_nums =10
|
54 |
+
for i in range(invoke_nums):
|
55 |
+
result = self.interpreter.set_input_tensor(0, input.data)
|
56 |
+
if result != 0:
|
57 |
+
print("interpreter set_input_tensor() failed")
|
58 |
+
t1=time.time()
|
59 |
+
result = self.interpreter.invoke()
|
60 |
+
cost_time = (time.time()-t1)*1000
|
61 |
+
invoke_time.append(cost_time)
|
62 |
+
|
63 |
+
max_invoke_time = max(invoke_time)
|
64 |
+
min_invoke_time = min(invoke_time)
|
65 |
+
mean_invoke_time = sum(invoke_time)/invoke_nums
|
66 |
+
var_invoketime=np.var(invoke_time)
|
67 |
+
print("====================================")
|
68 |
+
print(f"QNN invoke time:\n --mean_invoke_time is {mean_invoke_time} \n --max_invoke_time is {max_invoke_time} \n --min_invoke_time is {min_invoke_time} \n --var_invoketime is {var_invoketime}")
|
69 |
+
print("====================================")
|
70 |
+
features_0 = self.interpreter.get_output_tensor(0).reshape(1, 128*4,128*4,3).copy()
|
71 |
+
|
72 |
+
return features_0
|
73 |
+
|
74 |
+
|
75 |
+
def cosine_similarity(v1, v2):
|
76 |
+
v1 = v1.flatten()
|
77 |
+
v2 = v2.flatten()
|
78 |
+
# 计算点积
|
79 |
+
dot_product = np.dot(v1, v2)
|
80 |
+
# 计算每个向量的模长
|
81 |
+
norm_v1 = np.linalg.norm(v1)
|
82 |
+
norm_v2 = np.linalg.norm(v2)
|
83 |
+
# 防止除以零错误
|
84 |
+
norm_product = np.maximum(norm_v1 * norm_v2, 1e-8)
|
85 |
+
# 计算余弦相似度
|
86 |
+
return dot_product / norm_product
|
87 |
+
|
88 |
+
esrgan_model= esrganQnn()
|
89 |
+
test_img_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'LR/*')
|
90 |
+
|
91 |
+
idx = 0
|
92 |
+
for path in glob.glob(test_img_folder):
|
93 |
+
idx += 1
|
94 |
+
base = osp.splitext(osp.basename(path))[0]
|
95 |
+
print(idx, base)
|
96 |
+
# read images
|
97 |
+
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
98 |
+
img = cv2.resize(img, (128,128))
|
99 |
+
img = img * 1.0 / 255
|
100 |
+
img = img[:, :, [2, 1, 0]]
|
101 |
+
img_LR = np.expand_dims(img,axis=0).astype(np.float32)
|
102 |
+
print("img_LR shape:",img_LR.shape)
|
103 |
+
|
104 |
+
t0 = time.time()
|
105 |
+
output = esrgan_model(img_LR) #.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
106 |
+
|
107 |
+
output = np.clip(output[0], 0, 1)
|
108 |
+
output = np.transpose(output, (2, 0, 1))
|
109 |
+
use_time = round((time.time() - t0) * 1000, 2)
|
110 |
+
print(f"Inference_time:{use_time} ms")
|
111 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
112 |
+
output = (output * 255.0).round()
|
113 |
+
cv2.imwrite(os.path.join(os.path.dirname(os.path.abspath(__file__)),'{:s}_rlt_16qnn.png'.format(base)), output)
|
114 |
+
print("ok")
|
115 |
+
esrgan_model.interpreter.destory()
|
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
|
5 |
+
- Input shape: 128x128
|
6 |
+
- Number of parameters: 16.69M
|
7 |
+
- Model size: 63.8MB
|
8 |
+
- Output shape: 1x3x512x512
|
9 |
+
|
10 |
+
Source model repository: [ESRGAN](https://github.com/xinntao/ESRGAN/)
|
11 |
+
|
12 |
+
### Converted Model
|
13 |
+
|
14 |
+
- Precision: FP16
|
15 |
+
- Backend: QNN2.16
|
16 |
+
- Target Device: SNM972 QCS8550
|
17 |
+
|
18 |
+
## Inference with AidLite SDK
|
19 |
+
|
20 |
+
### SDK installation
|
21 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
22 |
+
|
23 |
+
- install AidLite SDK
|
24 |
+
|
25 |
+
```bash
|
26 |
+
# Install the appropriate version of the aidlite sdk
|
27 |
+
sudo aid-pkg update
|
28 |
+
sudo aid-pkg install aidlite-sdk
|
29 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
30 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
31 |
+
```
|
32 |
+
|
33 |
+
- Verify AidLite SDK
|
34 |
+
|
35 |
+
```bash
|
36 |
+
# aidlite sdk c++ check
|
37 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
38 |
+
|
39 |
+
# aidlite sdk python check
|
40 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
41 |
+
```
|
42 |
+
|
43 |
+
### Run demo
|
44 |
+
#### python
|
45 |
+
```bash
|
46 |
+
cd python
|
47 |
+
python3 demo_qnn.py
|
48 |
+
```
|
49 |
+
|
50 |
+
#### c++
|
51 |
+
```bash
|
52 |
+
cd esrgan/model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/cpp
|
53 |
+
mkdir build && cd build
|
54 |
+
cmake ..
|
55 |
+
make
|
56 |
+
./run_test
|
57 |
+
```
|
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/cpp/CMakeLists.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required (VERSION 3.5)
|
2 |
+
project("run_test")
|
3 |
+
|
4 |
+
find_package(OpenCV REQUIRED)
|
5 |
+
|
6 |
+
message(STATUS "oPENCV Library status:")
|
7 |
+
message(STATUS ">version:${OpenCV_VERSION}")
|
8 |
+
message(STATUS "Include:${OpenCV_INCLUDE_DIRS}")
|
9 |
+
|
10 |
+
set(CMAKE_CXX_FLAGS "-Wno-error=deprecated-declarations -Wno-deprecated-declarations")
|
11 |
+
|
12 |
+
include_directories(
|
13 |
+
/usr/local/include
|
14 |
+
/usr/include/opencv4
|
15 |
+
)
|
16 |
+
|
17 |
+
link_directories(
|
18 |
+
/usr/local/lib/
|
19 |
+
)
|
20 |
+
|
21 |
+
file(GLOB SRC_LISTS
|
22 |
+
${CMAKE_CURRENT_SOURCE_DIR}/run_test.cpp
|
23 |
+
)
|
24 |
+
|
25 |
+
add_executable(run_test ${SRC_LISTS})
|
26 |
+
|
27 |
+
target_link_libraries(run_test
|
28 |
+
aidlite
|
29 |
+
${OpenCV_LIBS}
|
30 |
+
pthread
|
31 |
+
jsoncpp
|
32 |
+
)
|
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/cpp/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/cpp/run_test.cpp
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <iostream>
|
2 |
+
#include <fstream>
|
3 |
+
#include <opencv2/opencv.hpp>
|
4 |
+
#include <aidlux/aidlite/aidlite.hpp>
|
5 |
+
#include <vector>
|
6 |
+
#include <numeric>
|
7 |
+
#include <cmath>
|
8 |
+
#include <jsoncpp/json/json.h>
|
9 |
+
|
10 |
+
using namespace cv;
|
11 |
+
using namespace std;
|
12 |
+
using namespace Aidlux::Aidlite;
|
13 |
+
|
14 |
+
|
15 |
+
struct Args {
|
16 |
+
std::string target_model = "../../models/m_RRDB_esrgan_x4_fp16.qnn216.ctx.bin";
|
17 |
+
std::string imgs = "../baboon.png";
|
18 |
+
int invoke_nums = 10;
|
19 |
+
std::string model_type = "QNN";
|
20 |
+
};
|
21 |
+
|
22 |
+
|
23 |
+
Args parse_args(int argc, char* argv[]) {
|
24 |
+
Args args;
|
25 |
+
for (int i = 1; i < argc; ++i) {
|
26 |
+
std::string arg = argv[i];
|
27 |
+
if (arg == "--target_model" && i + 1 < argc) {
|
28 |
+
args.target_model = argv[++i];
|
29 |
+
} else if (arg == "--imgs" && i + 1 < argc) {
|
30 |
+
args.imgs = argv[++i];
|
31 |
+
} else if (arg == "--invoke_nums" && i + 1 < argc) {
|
32 |
+
args.invoke_nums = std::stoi(argv[++i]);
|
33 |
+
} else if (arg == "--model_type" && i + 1 < argc) {
|
34 |
+
args.model_type = argv[++i];
|
35 |
+
}
|
36 |
+
}
|
37 |
+
return args;
|
38 |
+
}
|
39 |
+
|
40 |
+
std::string to_lower(const std::string& str) {
|
41 |
+
std::string lower_str = str;
|
42 |
+
std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), [](unsigned char c) {
|
43 |
+
return std::tolower(c);
|
44 |
+
});
|
45 |
+
return lower_str;
|
46 |
+
}
|
47 |
+
|
48 |
+
int transpose(float* src, unsigned int* src_dims, unsigned int* tsp_dims, float* dest){
|
49 |
+
|
50 |
+
int current_coordinate[4] = {0, 0, 0, 0};
|
51 |
+
for(int a = 0; a < src_dims[0]; ++a){
|
52 |
+
current_coordinate[0] = a;
|
53 |
+
for(int b = 0; b < src_dims[1]; ++b){
|
54 |
+
current_coordinate[1] = b;
|
55 |
+
for(int c = 0; c < src_dims[2]; ++c){
|
56 |
+
current_coordinate[2] = c;
|
57 |
+
for(int d = 0; d < src_dims[3]; ++d){
|
58 |
+
current_coordinate[3] = d;
|
59 |
+
|
60 |
+
int old_index = current_coordinate[0]*src_dims[1]*src_dims[2]*src_dims[3] +
|
61 |
+
current_coordinate[1]*src_dims[2]*src_dims[3] +
|
62 |
+
current_coordinate[2]*src_dims[3] +
|
63 |
+
current_coordinate[3];
|
64 |
+
|
65 |
+
int new_index = current_coordinate[tsp_dims[0]]*src_dims[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
66 |
+
current_coordinate[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
67 |
+
current_coordinate[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
68 |
+
current_coordinate[tsp_dims[3]];
|
69 |
+
|
70 |
+
dest[new_index] = src[old_index];
|
71 |
+
}
|
72 |
+
}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
return EXIT_SUCCESS;
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
void save_output_image_from_nhwc(float* output) {
|
81 |
+
unsigned int H = 512;
|
82 |
+
unsigned int W = 512;
|
83 |
+
unsigned int C = 3;
|
84 |
+
// Step 1: clip [0,1]
|
85 |
+
std::vector<float> clipped(H * W * C);
|
86 |
+
for (int i = 0; i < H * W * C; ++i) {
|
87 |
+
clipped[i] = std::min(1.0f, std::max(0.0f, output[i]));
|
88 |
+
}
|
89 |
+
|
90 |
+
// Step 2: NHWC (H,W,C) to CHW (C,H,W)
|
91 |
+
unsigned int src_dims1[4] = {H, W, C, 1};
|
92 |
+
unsigned int tsp_dims1[4] = {2, 0, 1, 3};
|
93 |
+
std::vector<float> chw(C * H * W);
|
94 |
+
transpose(clipped.data(), src_dims1, tsp_dims1, chw.data());
|
95 |
+
|
96 |
+
// Step 3: RGB to BGR
|
97 |
+
std::vector<float> chw_bgr(C * H * W);
|
98 |
+
for (int h = 0; h < H; ++h) {
|
99 |
+
for (int w = 0; w < W; ++w) {
|
100 |
+
for (int c = 0; c < C; ++c) {
|
101 |
+
int src_index = c * H * W + h * W + w;
|
102 |
+
int dst_c = 2 - c;
|
103 |
+
int dst_index = dst_c * H * W + h * W + w;
|
104 |
+
chw_bgr[dst_index] = chw[src_index];
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
// Step 4: CHW to HWC
|
110 |
+
unsigned int src_dims2[4] = {C, H, W, 1};
|
111 |
+
unsigned int tsp_dims2[4] = {1, 2, 0, 3};
|
112 |
+
std::vector<float> hwc(H * W * C);
|
113 |
+
transpose(chw_bgr.data(), src_dims2, tsp_dims2, hwc.data());
|
114 |
+
|
115 |
+
// Step 5: Convert to CV_8UC3 image
|
116 |
+
cv::Mat result(H, W, CV_8UC3);
|
117 |
+
for (int y = 0; y < H; ++y) {
|
118 |
+
for (int x = 0; x < W; ++x) {
|
119 |
+
int idx = (y * W + x) * C;
|
120 |
+
uchar b = static_cast<uchar>(std::round(hwc[idx + 0] * 255.0f));
|
121 |
+
uchar g = static_cast<uchar>(std::round(hwc[idx + 1] * 255.0f));
|
122 |
+
uchar r = static_cast<uchar>(std::round(hwc[idx + 2] * 255.0f));
|
123 |
+
result.at<cv::Vec3b>(y, x) = cv::Vec3b(b, g, r);
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
// Save the image
|
128 |
+
cv::imwrite("./result_img.jpg", result);
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
int invoke(const Args& args) {
|
133 |
+
std::cout << "Start main ... ... Model Path: " << args.target_model << "\n"
|
134 |
+
<< "Image Path: " << args.imgs << "\n"
|
135 |
+
<< "Inference Nums: " << args.invoke_nums << "\n"
|
136 |
+
<< "Model Type: " << args.model_type << "\n";
|
137 |
+
Model* model = Model::create_instance(args.target_model);
|
138 |
+
if(model == nullptr){
|
139 |
+
printf("Create model failed !\n");
|
140 |
+
return EXIT_FAILURE;
|
141 |
+
}
|
142 |
+
Config* config = Config::create_instance();
|
143 |
+
if(config == nullptr){
|
144 |
+
printf("Create config failed !\n");
|
145 |
+
return EXIT_FAILURE;
|
146 |
+
}
|
147 |
+
config->implement_type = ImplementType::TYPE_LOCAL;
|
148 |
+
std::string model_type_lower = to_lower(args.model_type);
|
149 |
+
if (model_type_lower == "qnn"){
|
150 |
+
config->framework_type = FrameworkType::TYPE_QNN;
|
151 |
+
} else if (model_type_lower == "snpe2" || model_type_lower == "snpe") {
|
152 |
+
config->framework_type = FrameworkType::TYPE_SNPE2;
|
153 |
+
}
|
154 |
+
config->accelerate_type = AccelerateType::TYPE_DSP;
|
155 |
+
config->is_quantify_model = 1;
|
156 |
+
|
157 |
+
unsigned int model_h = 128;
|
158 |
+
unsigned int model_w = 128;
|
159 |
+
std::vector<std::vector<uint32_t>> input_shapes = {{1,model_h,model_w,3}};
|
160 |
+
std::vector<std::vector<uint32_t>> output_shapes = {{1,3,model_h*4,model_w*4}};
|
161 |
+
model->set_model_properties(input_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32, output_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32);
|
162 |
+
std::unique_ptr<Interpreter> fast_interpreter = InterpreterBuilder::build_interpretper_from_model_and_config(model, config);
|
163 |
+
if(fast_interpreter == nullptr){
|
164 |
+
printf("build_interpretper_from_model_and_config failed !\n");
|
165 |
+
return EXIT_FAILURE;
|
166 |
+
}
|
167 |
+
int result = fast_interpreter->init();
|
168 |
+
if(result != EXIT_SUCCESS){
|
169 |
+
printf("interpreter->init() failed !\n");
|
170 |
+
return EXIT_FAILURE;
|
171 |
+
}
|
172 |
+
// load model
|
173 |
+
fast_interpreter->load_model();
|
174 |
+
if(result != EXIT_SUCCESS){
|
175 |
+
printf("interpreter->load_model() failed !\n");
|
176 |
+
return EXIT_FAILURE;
|
177 |
+
}
|
178 |
+
printf("detect model load success!\n");
|
179 |
+
|
180 |
+
cv::Mat frame = cv::imread(args.imgs);
|
181 |
+
if (frame.empty()) {
|
182 |
+
printf("detect image load failed!\n");
|
183 |
+
return 1;
|
184 |
+
}
|
185 |
+
printf("img_src cols: %d, img_src rows: %d\n", frame.cols, frame.rows);
|
186 |
+
cv::Mat input_data;
|
187 |
+
cv::Mat frame_clone = frame.clone();
|
188 |
+
cv::cvtColor(frame_clone, frame_clone, cv::COLOR_BGR2RGB);
|
189 |
+
cv::resize(frame_clone, frame_clone, cv::Size(model_w, model_h));
|
190 |
+
frame_clone.convertTo(input_data, CV_32FC3, 1.0 / 255.0);
|
191 |
+
|
192 |
+
float *outdata0 = nullptr;
|
193 |
+
std::vector<float> invoke_time;
|
194 |
+
for (int i = 0; i < args.invoke_nums; ++i) {
|
195 |
+
result = fast_interpreter->set_input_tensor(0, input_data.data);
|
196 |
+
if(result != EXIT_SUCCESS){
|
197 |
+
printf("interpreter->set_input_tensor() failed !\n");
|
198 |
+
return EXIT_FAILURE;
|
199 |
+
}
|
200 |
+
auto t1 = std::chrono::high_resolution_clock::now();
|
201 |
+
result = fast_interpreter->invoke();
|
202 |
+
auto t2 = std::chrono::high_resolution_clock::now();
|
203 |
+
std::chrono::duration<double> cost_time = t2 - t1;
|
204 |
+
invoke_time.push_back(cost_time.count() * 1000);
|
205 |
+
if(result != EXIT_SUCCESS){
|
206 |
+
printf("interpreter->invoke() failed !\n");
|
207 |
+
return EXIT_FAILURE;
|
208 |
+
}
|
209 |
+
uint32_t out_data_0 = 0;
|
210 |
+
result = fast_interpreter->get_output_tensor(0, (void**)&outdata0, &out_data_0);
|
211 |
+
if(result != EXIT_SUCCESS){
|
212 |
+
printf("interpreter->get_output_tensor() 1 failed !\n");
|
213 |
+
return EXIT_FAILURE;
|
214 |
+
}
|
215 |
+
|
216 |
+
}
|
217 |
+
|
218 |
+
float max_invoke_time = *std::max_element(invoke_time.begin(), invoke_time.end());
|
219 |
+
float min_invoke_time = *std::min_element(invoke_time.begin(), invoke_time.end());
|
220 |
+
float mean_invoke_time = std::accumulate(invoke_time.begin(), invoke_time.end(), 0.0f) / args.invoke_nums;
|
221 |
+
float var_invoketime = 0.0f;
|
222 |
+
for (auto time : invoke_time) {
|
223 |
+
var_invoketime += (time - mean_invoke_time) * (time - mean_invoke_time);
|
224 |
+
}
|
225 |
+
var_invoketime /= args.invoke_nums;
|
226 |
+
printf("=======================================\n");
|
227 |
+
printf("QNN inference %d times :\n --mean_invoke_time is %f \n --max_invoke_time is %f \n --min_invoke_time is %f \n --var_invoketime is %f\n",
|
228 |
+
args.invoke_nums, mean_invoke_time, max_invoke_time, min_invoke_time, var_invoketime);
|
229 |
+
printf("=======================================\n");
|
230 |
+
|
231 |
+
// post process
|
232 |
+
save_output_image_from_nhwc(outdata0);
|
233 |
+
|
234 |
+
|
235 |
+
fast_interpreter->destory();
|
236 |
+
return 0;
|
237 |
+
}
|
238 |
+
|
239 |
+
|
240 |
+
int main(int argc, char* argv[]) {
|
241 |
+
Args args = parse_args(argc, argv);
|
242 |
+
return invoke(args);
|
243 |
+
}
|
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/models/m_RRDB_esrgan_x4_fp16.qnn216.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc96c372fa7389448b8a06b9ce4d39d52f764d4017fbe44751dbf4f8b67a2205
|
3 |
+
size 38752576
|
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/LR/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc
ADDED
Binary file (3.2 kB). View file
|
|
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc
ADDED
Binary file (3.22 kB). View file
|
|
model_farm_esrgan_qcs8550_qnn2.16_fp16_aidlite/python/demo_qnn.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import glob
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
import aidlite
|
8 |
+
import os
|
9 |
+
|
10 |
+
class esrganQnn:
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
self.model = aidlite.Model.create_instance(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../models/m_RRDB_esrgan_x4_fp16.qnn216.ctx.bin"))
|
14 |
+
if self.model is None:
|
15 |
+
print("Create model failed !")
|
16 |
+
return
|
17 |
+
|
18 |
+
self.config = aidlite.Config.create_instance()
|
19 |
+
if self.config is None:
|
20 |
+
print("build_interpretper_from_model_and_config failed !")
|
21 |
+
return
|
22 |
+
|
23 |
+
self.config.implement_type = aidlite.ImplementType.TYPE_LOCAL
|
24 |
+
self.config.framework_type = aidlite.FrameworkType.TYPE_QNN
|
25 |
+
|
26 |
+
self.config.accelerate_type = aidlite.AccelerateType.TYPE_DSP
|
27 |
+
self.config.is_quantify_model = 1
|
28 |
+
|
29 |
+
self.interpreter = aidlite.InterpreterBuilder.build_interpretper_from_model_and_config(self.model, self.config)
|
30 |
+
if self.interpreter is None:
|
31 |
+
print("build_interpretper_from_model_and_config failed !")
|
32 |
+
return
|
33 |
+
input_shapes = [[1, 128, 128,3]]
|
34 |
+
# input_shapes = [[1,3, 128, 128]]
|
35 |
+
output_shapes = [[1, 3,128*4,128*4]]
|
36 |
+
self.model.set_model_properties(input_shapes, aidlite.DataType.TYPE_FLOAT32,
|
37 |
+
output_shapes, aidlite.DataType.TYPE_FLOAT32)
|
38 |
+
|
39 |
+
if self.interpreter is None:
|
40 |
+
print("build_interpretper_from_model_and_config failed !")
|
41 |
+
result = self.interpreter.init()
|
42 |
+
if result != 0:
|
43 |
+
print(f"interpreter init failed !")
|
44 |
+
result = self.interpreter.load_model()
|
45 |
+
if result != 0:
|
46 |
+
print("interpreter load model failed !")
|
47 |
+
|
48 |
+
print(" model load success!")
|
49 |
+
|
50 |
+
def __call__(self, input):
|
51 |
+
self.interpreter.set_input_tensor(0,input)
|
52 |
+
invoke_time=[]
|
53 |
+
invoke_nums =10
|
54 |
+
for i in range(invoke_nums):
|
55 |
+
result = self.interpreter.set_input_tensor(0, input.data)
|
56 |
+
if result != 0:
|
57 |
+
print("interpreter set_input_tensor() failed")
|
58 |
+
t1=time.time()
|
59 |
+
result = self.interpreter.invoke()
|
60 |
+
cost_time = (time.time()-t1)*1000
|
61 |
+
invoke_time.append(cost_time)
|
62 |
+
|
63 |
+
max_invoke_time = max(invoke_time)
|
64 |
+
min_invoke_time = min(invoke_time)
|
65 |
+
mean_invoke_time = sum(invoke_time)/invoke_nums
|
66 |
+
var_invoketime=np.var(invoke_time)
|
67 |
+
print("====================================")
|
68 |
+
print(f"QNN invoke time:\n --mean_invoke_time is {mean_invoke_time} \n --max_invoke_time is {max_invoke_time} \n --min_invoke_time is {min_invoke_time} \n --var_invoketime is {var_invoketime}")
|
69 |
+
print("====================================")
|
70 |
+
features_0 = self.interpreter.get_output_tensor(0).reshape(1, 128*4,128*4,3).copy()
|
71 |
+
|
72 |
+
return features_0
|
73 |
+
|
74 |
+
|
75 |
+
def cosine_similarity(v1, v2):
|
76 |
+
v1 = v1.flatten()
|
77 |
+
v2 = v2.flatten()
|
78 |
+
# 计算点积
|
79 |
+
dot_product = np.dot(v1, v2)
|
80 |
+
# 计算每个向量的模长
|
81 |
+
norm_v1 = np.linalg.norm(v1)
|
82 |
+
norm_v2 = np.linalg.norm(v2)
|
83 |
+
# 防止除以零错误
|
84 |
+
norm_product = np.maximum(norm_v1 * norm_v2, 1e-8)
|
85 |
+
# 计算余弦相似度
|
86 |
+
return dot_product / norm_product
|
87 |
+
|
88 |
+
esrgan_model= esrganQnn()
|
89 |
+
test_img_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'LR/*')
|
90 |
+
|
91 |
+
idx = 0
|
92 |
+
for path in glob.glob(test_img_folder):
|
93 |
+
idx += 1
|
94 |
+
base = osp.splitext(osp.basename(path))[0]
|
95 |
+
print(idx, base)
|
96 |
+
# read images
|
97 |
+
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
98 |
+
img = cv2.resize(img, (128,128))
|
99 |
+
img = img * 1.0 / 255
|
100 |
+
img = img[:, :, [2, 1, 0]]
|
101 |
+
img_LR = np.expand_dims(img,axis=0).astype(np.float32)
|
102 |
+
print("img_LR shape:",img_LR.shape)
|
103 |
+
|
104 |
+
t0 = time.time()
|
105 |
+
output = esrgan_model(img_LR) #.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
106 |
+
|
107 |
+
output = np.clip(output[0], 0, 1)
|
108 |
+
output = np.transpose(output, (2, 0, 1))
|
109 |
+
use_time = round((time.time() - t0) * 1000, 2)
|
110 |
+
print(f"Inference_time:{use_time} ms")
|
111 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
112 |
+
output = (output * 255.0).round()
|
113 |
+
cv2.imwrite(os.path.join(os.path.dirname(os.path.abspath(__file__)),'{:s}_rlt_16qnn.png'.format(base)), output)
|
114 |
+
print("ok")
|
115 |
+
esrgan_model.interpreter.destory()
|
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
|
5 |
+
- Input shape: 128x128
|
6 |
+
- Number of parameters: 16.69M
|
7 |
+
- Model size: 63.8MB
|
8 |
+
- Output shape: 1x3x512x512
|
9 |
+
|
10 |
+
Source model repository: [ESRGAN](https://github.com/xinntao/ESRGAN/)
|
11 |
+
|
12 |
+
### Converted Model
|
13 |
+
|
14 |
+
- Precision: INT8
|
15 |
+
- Backend: QNN2.16
|
16 |
+
- Target Device: SNM972 QCS8550
|
17 |
+
|
18 |
+
## Inference with AidLite SDK
|
19 |
+
|
20 |
+
### SDK installation
|
21 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
22 |
+
|
23 |
+
- install AidLite SDK
|
24 |
+
|
25 |
+
```bash
|
26 |
+
# Install the appropriate version of the aidlite sdk
|
27 |
+
sudo aid-pkg update
|
28 |
+
sudo aid-pkg install aidlite-sdk
|
29 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
30 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
31 |
+
```
|
32 |
+
|
33 |
+
- Verify AidLite SDK
|
34 |
+
|
35 |
+
```bash
|
36 |
+
# aidlite sdk c++ check
|
37 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
38 |
+
|
39 |
+
# aidlite sdk python check
|
40 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
41 |
+
```
|
42 |
+
|
43 |
+
### Run demo
|
44 |
+
#### python
|
45 |
+
```bash
|
46 |
+
cd python
|
47 |
+
python3 demo_qnn.py
|
48 |
+
```
|
49 |
+
|
50 |
+
#### c++
|
51 |
+
```bash
|
52 |
+
cd esrgan/model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/cpp
|
53 |
+
mkdir build && cd build
|
54 |
+
cmake ..
|
55 |
+
make
|
56 |
+
./run_test
|
57 |
+
```
|
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/cpp/CMakeLists.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required (VERSION 3.5)
|
2 |
+
project("run_test")
|
3 |
+
|
4 |
+
find_package(OpenCV REQUIRED)
|
5 |
+
|
6 |
+
message(STATUS "oPENCV Library status:")
|
7 |
+
message(STATUS ">version:${OpenCV_VERSION}")
|
8 |
+
message(STATUS "Include:${OpenCV_INCLUDE_DIRS}")
|
9 |
+
|
10 |
+
set(CMAKE_CXX_FLAGS "-Wno-error=deprecated-declarations -Wno-deprecated-declarations")
|
11 |
+
|
12 |
+
include_directories(
|
13 |
+
/usr/local/include
|
14 |
+
/usr/include/opencv4
|
15 |
+
)
|
16 |
+
|
17 |
+
link_directories(
|
18 |
+
/usr/local/lib/
|
19 |
+
)
|
20 |
+
|
21 |
+
file(GLOB SRC_LISTS
|
22 |
+
${CMAKE_CURRENT_SOURCE_DIR}/run_test.cpp
|
23 |
+
)
|
24 |
+
|
25 |
+
add_executable(run_test ${SRC_LISTS})
|
26 |
+
|
27 |
+
target_link_libraries(run_test
|
28 |
+
aidlite
|
29 |
+
${OpenCV_LIBS}
|
30 |
+
pthread
|
31 |
+
jsoncpp
|
32 |
+
)
|
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/cpp/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/cpp/run_test.cpp
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <iostream>
|
2 |
+
#include <fstream>
|
3 |
+
#include <opencv2/opencv.hpp>
|
4 |
+
#include <aidlux/aidlite/aidlite.hpp>
|
5 |
+
#include <vector>
|
6 |
+
#include <numeric>
|
7 |
+
#include <cmath>
|
8 |
+
#include <jsoncpp/json/json.h>
|
9 |
+
|
10 |
+
using namespace cv;
|
11 |
+
using namespace std;
|
12 |
+
using namespace Aidlux::Aidlite;
|
13 |
+
|
14 |
+
|
15 |
+
struct Args {
|
16 |
+
std::string target_model = "../../models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin";
|
17 |
+
std::string imgs = "../baboon.png";
|
18 |
+
int invoke_nums = 10;
|
19 |
+
std::string model_type = "QNN";
|
20 |
+
};
|
21 |
+
|
22 |
+
|
23 |
+
Args parse_args(int argc, char* argv[]) {
|
24 |
+
Args args;
|
25 |
+
for (int i = 1; i < argc; ++i) {
|
26 |
+
std::string arg = argv[i];
|
27 |
+
if (arg == "--target_model" && i + 1 < argc) {
|
28 |
+
args.target_model = argv[++i];
|
29 |
+
} else if (arg == "--imgs" && i + 1 < argc) {
|
30 |
+
args.imgs = argv[++i];
|
31 |
+
} else if (arg == "--invoke_nums" && i + 1 < argc) {
|
32 |
+
args.invoke_nums = std::stoi(argv[++i]);
|
33 |
+
} else if (arg == "--model_type" && i + 1 < argc) {
|
34 |
+
args.model_type = argv[++i];
|
35 |
+
}
|
36 |
+
}
|
37 |
+
return args;
|
38 |
+
}
|
39 |
+
|
40 |
+
std::string to_lower(const std::string& str) {
|
41 |
+
std::string lower_str = str;
|
42 |
+
std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), [](unsigned char c) {
|
43 |
+
return std::tolower(c);
|
44 |
+
});
|
45 |
+
return lower_str;
|
46 |
+
}
|
47 |
+
|
48 |
+
int transpose(float* src, unsigned int* src_dims, unsigned int* tsp_dims, float* dest){
|
49 |
+
|
50 |
+
int current_coordinate[4] = {0, 0, 0, 0};
|
51 |
+
for(int a = 0; a < src_dims[0]; ++a){
|
52 |
+
current_coordinate[0] = a;
|
53 |
+
for(int b = 0; b < src_dims[1]; ++b){
|
54 |
+
current_coordinate[1] = b;
|
55 |
+
for(int c = 0; c < src_dims[2]; ++c){
|
56 |
+
current_coordinate[2] = c;
|
57 |
+
for(int d = 0; d < src_dims[3]; ++d){
|
58 |
+
current_coordinate[3] = d;
|
59 |
+
|
60 |
+
int old_index = current_coordinate[0]*src_dims[1]*src_dims[2]*src_dims[3] +
|
61 |
+
current_coordinate[1]*src_dims[2]*src_dims[3] +
|
62 |
+
current_coordinate[2]*src_dims[3] +
|
63 |
+
current_coordinate[3];
|
64 |
+
|
65 |
+
int new_index = current_coordinate[tsp_dims[0]]*src_dims[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
66 |
+
current_coordinate[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
67 |
+
current_coordinate[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
68 |
+
current_coordinate[tsp_dims[3]];
|
69 |
+
|
70 |
+
dest[new_index] = src[old_index];
|
71 |
+
}
|
72 |
+
}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
return EXIT_SUCCESS;
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
void save_output_image_from_nhwc(float* output) {
|
81 |
+
unsigned int H = 512;
|
82 |
+
unsigned int W = 512;
|
83 |
+
unsigned int C = 3;
|
84 |
+
// Step 1: clip [0,1]
|
85 |
+
std::vector<float> clipped(H * W * C);
|
86 |
+
for (int i = 0; i < H * W * C; ++i) {
|
87 |
+
clipped[i] = std::min(1.0f, std::max(0.0f, output[i]));
|
88 |
+
}
|
89 |
+
|
90 |
+
// Step 2: NHWC (H,W,C) to CHW (C,H,W)
|
91 |
+
unsigned int src_dims1[4] = {H, W, C, 1};
|
92 |
+
unsigned int tsp_dims1[4] = {2, 0, 1, 3};
|
93 |
+
std::vector<float> chw(C * H * W);
|
94 |
+
transpose(clipped.data(), src_dims1, tsp_dims1, chw.data());
|
95 |
+
|
96 |
+
// Step 3: RGB to BGR
|
97 |
+
std::vector<float> chw_bgr(C * H * W);
|
98 |
+
for (int h = 0; h < H; ++h) {
|
99 |
+
for (int w = 0; w < W; ++w) {
|
100 |
+
for (int c = 0; c < C; ++c) {
|
101 |
+
int src_index = c * H * W + h * W + w;
|
102 |
+
int dst_c = 2 - c;
|
103 |
+
int dst_index = dst_c * H * W + h * W + w;
|
104 |
+
chw_bgr[dst_index] = chw[src_index];
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
// Step 4: CHW to HWC
|
110 |
+
unsigned int src_dims2[4] = {C, H, W, 1};
|
111 |
+
unsigned int tsp_dims2[4] = {1, 2, 0, 3};
|
112 |
+
std::vector<float> hwc(H * W * C);
|
113 |
+
transpose(chw_bgr.data(), src_dims2, tsp_dims2, hwc.data());
|
114 |
+
|
115 |
+
// Step 5: Convert to CV_8UC3 image
|
116 |
+
cv::Mat result(H, W, CV_8UC3);
|
117 |
+
for (int y = 0; y < H; ++y) {
|
118 |
+
for (int x = 0; x < W; ++x) {
|
119 |
+
int idx = (y * W + x) * C;
|
120 |
+
uchar b = static_cast<uchar>(std::round(hwc[idx + 0] * 255.0f));
|
121 |
+
uchar g = static_cast<uchar>(std::round(hwc[idx + 1] * 255.0f));
|
122 |
+
uchar r = static_cast<uchar>(std::round(hwc[idx + 2] * 255.0f));
|
123 |
+
result.at<cv::Vec3b>(y, x) = cv::Vec3b(b, g, r);
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
// Save the image
|
128 |
+
cv::imwrite("./result_img.jpg", result);
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
int invoke(const Args& args) {
|
133 |
+
std::cout << "Start main ... ... Model Path: " << args.target_model << "\n"
|
134 |
+
<< "Image Path: " << args.imgs << "\n"
|
135 |
+
<< "Inference Nums: " << args.invoke_nums << "\n"
|
136 |
+
<< "Model Type: " << args.model_type << "\n";
|
137 |
+
Model* model = Model::create_instance(args.target_model);
|
138 |
+
if(model == nullptr){
|
139 |
+
printf("Create model failed !\n");
|
140 |
+
return EXIT_FAILURE;
|
141 |
+
}
|
142 |
+
Config* config = Config::create_instance();
|
143 |
+
if(config == nullptr){
|
144 |
+
printf("Create config failed !\n");
|
145 |
+
return EXIT_FAILURE;
|
146 |
+
}
|
147 |
+
config->implement_type = ImplementType::TYPE_LOCAL;
|
148 |
+
std::string model_type_lower = to_lower(args.model_type);
|
149 |
+
if (model_type_lower == "qnn"){
|
150 |
+
config->framework_type = FrameworkType::TYPE_QNN;
|
151 |
+
} else if (model_type_lower == "snpe2" || model_type_lower == "snpe") {
|
152 |
+
config->framework_type = FrameworkType::TYPE_SNPE2;
|
153 |
+
}
|
154 |
+
config->accelerate_type = AccelerateType::TYPE_DSP;
|
155 |
+
config->is_quantify_model = 1;
|
156 |
+
|
157 |
+
unsigned int model_h = 128;
|
158 |
+
unsigned int model_w = 128;
|
159 |
+
std::vector<std::vector<uint32_t>> input_shapes = {{1,model_h,model_w,3}};
|
160 |
+
std::vector<std::vector<uint32_t>> output_shapes = {{1,3,model_h*4,model_w*4}};
|
161 |
+
model->set_model_properties(input_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32, output_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32);
|
162 |
+
std::unique_ptr<Interpreter> fast_interpreter = InterpreterBuilder::build_interpretper_from_model_and_config(model, config);
|
163 |
+
if(fast_interpreter == nullptr){
|
164 |
+
printf("build_interpretper_from_model_and_config failed !\n");
|
165 |
+
return EXIT_FAILURE;
|
166 |
+
}
|
167 |
+
int result = fast_interpreter->init();
|
168 |
+
if(result != EXIT_SUCCESS){
|
169 |
+
printf("interpreter->init() failed !\n");
|
170 |
+
return EXIT_FAILURE;
|
171 |
+
}
|
172 |
+
// load model
|
173 |
+
fast_interpreter->load_model();
|
174 |
+
if(result != EXIT_SUCCESS){
|
175 |
+
printf("interpreter->load_model() failed !\n");
|
176 |
+
return EXIT_FAILURE;
|
177 |
+
}
|
178 |
+
printf("detect model load success!\n");
|
179 |
+
|
180 |
+
cv::Mat frame = cv::imread(args.imgs);
|
181 |
+
if (frame.empty()) {
|
182 |
+
printf("detect image load failed!\n");
|
183 |
+
return 1;
|
184 |
+
}
|
185 |
+
printf("img_src cols: %d, img_src rows: %d\n", frame.cols, frame.rows);
|
186 |
+
cv::Mat input_data;
|
187 |
+
cv::Mat frame_clone = frame.clone();
|
188 |
+
cv::cvtColor(frame_clone, frame_clone, cv::COLOR_BGR2RGB);
|
189 |
+
cv::resize(frame_clone, frame_clone, cv::Size(model_w, model_h));
|
190 |
+
frame_clone.convertTo(input_data, CV_32FC3, 1.0 / 255.0);
|
191 |
+
|
192 |
+
float *outdata0 = nullptr;
|
193 |
+
std::vector<float> invoke_time;
|
194 |
+
for (int i = 0; i < args.invoke_nums; ++i) {
|
195 |
+
result = fast_interpreter->set_input_tensor(0, input_data.data);
|
196 |
+
if(result != EXIT_SUCCESS){
|
197 |
+
printf("interpreter->set_input_tensor() failed !\n");
|
198 |
+
return EXIT_FAILURE;
|
199 |
+
}
|
200 |
+
auto t1 = std::chrono::high_resolution_clock::now();
|
201 |
+
result = fast_interpreter->invoke();
|
202 |
+
auto t2 = std::chrono::high_resolution_clock::now();
|
203 |
+
std::chrono::duration<double> cost_time = t2 - t1;
|
204 |
+
invoke_time.push_back(cost_time.count() * 1000);
|
205 |
+
if(result != EXIT_SUCCESS){
|
206 |
+
printf("interpreter->invoke() failed !\n");
|
207 |
+
return EXIT_FAILURE;
|
208 |
+
}
|
209 |
+
uint32_t out_data_0 = 0;
|
210 |
+
result = fast_interpreter->get_output_tensor(0, (void**)&outdata0, &out_data_0);
|
211 |
+
if(result != EXIT_SUCCESS){
|
212 |
+
printf("interpreter->get_output_tensor() 1 failed !\n");
|
213 |
+
return EXIT_FAILURE;
|
214 |
+
}
|
215 |
+
|
216 |
+
}
|
217 |
+
|
218 |
+
float max_invoke_time = *std::max_element(invoke_time.begin(), invoke_time.end());
|
219 |
+
float min_invoke_time = *std::min_element(invoke_time.begin(), invoke_time.end());
|
220 |
+
float mean_invoke_time = std::accumulate(invoke_time.begin(), invoke_time.end(), 0.0f) / args.invoke_nums;
|
221 |
+
float var_invoketime = 0.0f;
|
222 |
+
for (auto time : invoke_time) {
|
223 |
+
var_invoketime += (time - mean_invoke_time) * (time - mean_invoke_time);
|
224 |
+
}
|
225 |
+
var_invoketime /= args.invoke_nums;
|
226 |
+
printf("=======================================\n");
|
227 |
+
printf("QNN inference %d times :\n --mean_invoke_time is %f \n --max_invoke_time is %f \n --min_invoke_time is %f \n --var_invoketime is %f\n",
|
228 |
+
args.invoke_nums, mean_invoke_time, max_invoke_time, min_invoke_time, var_invoketime);
|
229 |
+
printf("=======================================\n");
|
230 |
+
|
231 |
+
// post process
|
232 |
+
save_output_image_from_nhwc(outdata0);
|
233 |
+
|
234 |
+
|
235 |
+
fast_interpreter->destory();
|
236 |
+
return 0;
|
237 |
+
}
|
238 |
+
|
239 |
+
|
240 |
+
int main(int argc, char* argv[]) {
|
241 |
+
Args args = parse_args(argc, argv);
|
242 |
+
return invoke(args);
|
243 |
+
}
|
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8e3ecf6ce818649cbb568d1cc79452d222a43b049847e0e7fc9496033a6fa81
|
3 |
+
size 22618440
|
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/LR/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc
ADDED
Binary file (3.2 kB). View file
|
|
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc
ADDED
Binary file (3.22 kB). View file
|
|
model_farm_esrgan_qcs8550_qnn2.16_int8_aidlite/python/demo_qnn.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import glob
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
import aidlite
|
8 |
+
import os
|
9 |
+
|
10 |
+
class esrganQnn:
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
self.model = aidlite.Model.create_instance(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../models/m_RRDB_esrgan_x4_w8a8.qnn216.ctx.bin"))
|
14 |
+
if self.model is None:
|
15 |
+
print("Create model failed !")
|
16 |
+
return
|
17 |
+
|
18 |
+
self.config = aidlite.Config.create_instance()
|
19 |
+
if self.config is None:
|
20 |
+
print("build_interpretper_from_model_and_config failed !")
|
21 |
+
return
|
22 |
+
|
23 |
+
self.config.implement_type = aidlite.ImplementType.TYPE_LOCAL
|
24 |
+
self.config.framework_type = aidlite.FrameworkType.TYPE_QNN
|
25 |
+
|
26 |
+
self.config.accelerate_type = aidlite.AccelerateType.TYPE_DSP
|
27 |
+
self.config.is_quantify_model = 1
|
28 |
+
|
29 |
+
self.interpreter = aidlite.InterpreterBuilder.build_interpretper_from_model_and_config(self.model, self.config)
|
30 |
+
if self.interpreter is None:
|
31 |
+
print("build_interpretper_from_model_and_config failed !")
|
32 |
+
return
|
33 |
+
input_shapes = [[1, 128, 128,3]]
|
34 |
+
# input_shapes = [[1,3, 128, 128]]
|
35 |
+
output_shapes = [[1, 3,128*4,128*4]]
|
36 |
+
self.model.set_model_properties(input_shapes, aidlite.DataType.TYPE_FLOAT32,
|
37 |
+
output_shapes, aidlite.DataType.TYPE_FLOAT32)
|
38 |
+
|
39 |
+
if self.interpreter is None:
|
40 |
+
print("build_interpretper_from_model_and_config failed !")
|
41 |
+
result = self.interpreter.init()
|
42 |
+
if result != 0:
|
43 |
+
print(f"interpreter init failed !")
|
44 |
+
result = self.interpreter.load_model()
|
45 |
+
if result != 0:
|
46 |
+
print("interpreter load model failed !")
|
47 |
+
|
48 |
+
print(" model load success!")
|
49 |
+
|
50 |
+
def __call__(self, input):
|
51 |
+
self.interpreter.set_input_tensor(0,input)
|
52 |
+
invoke_time=[]
|
53 |
+
invoke_nums =10
|
54 |
+
for i in range(invoke_nums):
|
55 |
+
result = self.interpreter.set_input_tensor(0, input.data)
|
56 |
+
if result != 0:
|
57 |
+
print("interpreter set_input_tensor() failed")
|
58 |
+
t1=time.time()
|
59 |
+
result = self.interpreter.invoke()
|
60 |
+
cost_time = (time.time()-t1)*1000
|
61 |
+
invoke_time.append(cost_time)
|
62 |
+
|
63 |
+
max_invoke_time = max(invoke_time)
|
64 |
+
min_invoke_time = min(invoke_time)
|
65 |
+
mean_invoke_time = sum(invoke_time)/invoke_nums
|
66 |
+
var_invoketime=np.var(invoke_time)
|
67 |
+
print("====================================")
|
68 |
+
print(f"QNN invoke time:\n --mean_invoke_time is {mean_invoke_time} \n --max_invoke_time is {max_invoke_time} \n --min_invoke_time is {min_invoke_time} \n --var_invoketime is {var_invoketime}")
|
69 |
+
print("====================================")
|
70 |
+
features_0 = self.interpreter.get_output_tensor(0).reshape(1, 128*4,128*4,3).copy()
|
71 |
+
|
72 |
+
return features_0
|
73 |
+
|
74 |
+
|
75 |
+
def cosine_similarity(v1, v2):
|
76 |
+
v1 = v1.flatten()
|
77 |
+
v2 = v2.flatten()
|
78 |
+
# 计算点积
|
79 |
+
dot_product = np.dot(v1, v2)
|
80 |
+
# 计算每个向量的模长
|
81 |
+
norm_v1 = np.linalg.norm(v1)
|
82 |
+
norm_v2 = np.linalg.norm(v2)
|
83 |
+
# 防止除以零错误
|
84 |
+
norm_product = np.maximum(norm_v1 * norm_v2, 1e-8)
|
85 |
+
# 计算余弦相似度
|
86 |
+
return dot_product / norm_product
|
87 |
+
|
88 |
+
esrgan_model= esrganQnn()
|
89 |
+
test_img_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'LR/*')
|
90 |
+
|
91 |
+
idx = 0
|
92 |
+
for path in glob.glob(test_img_folder):
|
93 |
+
idx += 1
|
94 |
+
base = osp.splitext(osp.basename(path))[0]
|
95 |
+
print(idx, base)
|
96 |
+
# read images
|
97 |
+
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
98 |
+
img = cv2.resize(img, (128,128))
|
99 |
+
img = img * 1.0 / 255
|
100 |
+
img = img[:, :, [2, 1, 0]]
|
101 |
+
img_LR = np.expand_dims(img,axis=0).astype(np.float32)
|
102 |
+
print("img_LR shape:",img_LR.shape)
|
103 |
+
|
104 |
+
t0 = time.time()
|
105 |
+
output = esrgan_model(img_LR) #.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
106 |
+
|
107 |
+
output = np.clip(output[0], 0, 1)
|
108 |
+
output = np.transpose(output, (2, 0, 1))
|
109 |
+
use_time = round((time.time() - t0) * 1000, 2)
|
110 |
+
print(f"Inference_time:{use_time} ms")
|
111 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
112 |
+
output = (output * 255.0).round()
|
113 |
+
cv2.imwrite(os.path.join(os.path.dirname(os.path.abspath(__file__)),'{:s}_rlt_16qnn.png'.format(base)), output)
|
114 |
+
print("ok")
|
115 |
+
esrgan_model.interpreter.destory()
|
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
|
5 |
+
- Input shape: 128x128
|
6 |
+
- Number of parameters: 16.69M
|
7 |
+
- Model size: 63.8MB
|
8 |
+
- Output shape: 1x3x512x512
|
9 |
+
|
10 |
+
Source model repository: [ESRGAN](https://github.com/xinntao/ESRGAN/)
|
11 |
+
|
12 |
+
### Converted Model
|
13 |
+
|
14 |
+
- Precision: W8A16
|
15 |
+
- Backend: QNN2.16
|
16 |
+
- Target Device: SNM972 QCS8550
|
17 |
+
|
18 |
+
## Inference with AidLite SDK
|
19 |
+
|
20 |
+
### SDK installation
|
21 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
22 |
+
|
23 |
+
- install AidLite SDK
|
24 |
+
|
25 |
+
```bash
|
26 |
+
# Install the appropriate version of the aidlite sdk
|
27 |
+
sudo aid-pkg update
|
28 |
+
sudo aid-pkg install aidlite-sdk
|
29 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
30 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
31 |
+
```
|
32 |
+
|
33 |
+
- Verify AidLite SDK
|
34 |
+
|
35 |
+
```bash
|
36 |
+
# aidlite sdk c++ check
|
37 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
38 |
+
|
39 |
+
# aidlite sdk python check
|
40 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
41 |
+
```
|
42 |
+
|
43 |
+
### Run demo
|
44 |
+
#### python
|
45 |
+
```bash
|
46 |
+
cd python
|
47 |
+
python3 demo_qnn.py
|
48 |
+
```
|
49 |
+
|
50 |
+
#### c++
|
51 |
+
```bash
|
52 |
+
cd esrgan/model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/cpp
|
53 |
+
mkdir build && cd build
|
54 |
+
cmake ..
|
55 |
+
make
|
56 |
+
./run_test
|
57 |
+
```
|
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/cpp/CMakeLists.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required (VERSION 3.5)
|
2 |
+
project("run_test")
|
3 |
+
|
4 |
+
find_package(OpenCV REQUIRED)
|
5 |
+
|
6 |
+
message(STATUS "oPENCV Library status:")
|
7 |
+
message(STATUS ">version:${OpenCV_VERSION}")
|
8 |
+
message(STATUS "Include:${OpenCV_INCLUDE_DIRS}")
|
9 |
+
|
10 |
+
set(CMAKE_CXX_FLAGS "-Wno-error=deprecated-declarations -Wno-deprecated-declarations")
|
11 |
+
|
12 |
+
include_directories(
|
13 |
+
/usr/local/include
|
14 |
+
/usr/include/opencv4
|
15 |
+
)
|
16 |
+
|
17 |
+
link_directories(
|
18 |
+
/usr/local/lib/
|
19 |
+
)
|
20 |
+
|
21 |
+
file(GLOB SRC_LISTS
|
22 |
+
${CMAKE_CURRENT_SOURCE_DIR}/run_test.cpp
|
23 |
+
)
|
24 |
+
|
25 |
+
add_executable(run_test ${SRC_LISTS})
|
26 |
+
|
27 |
+
target_link_libraries(run_test
|
28 |
+
aidlite
|
29 |
+
${OpenCV_LIBS}
|
30 |
+
pthread
|
31 |
+
jsoncpp
|
32 |
+
)
|
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/cpp/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/cpp/run_test.cpp
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <iostream>
|
2 |
+
#include <fstream>
|
3 |
+
#include <opencv2/opencv.hpp>
|
4 |
+
#include <aidlux/aidlite/aidlite.hpp>
|
5 |
+
#include <vector>
|
6 |
+
#include <numeric>
|
7 |
+
#include <cmath>
|
8 |
+
#include <jsoncpp/json/json.h>
|
9 |
+
|
10 |
+
using namespace cv;
|
11 |
+
using namespace std;
|
12 |
+
using namespace Aidlux::Aidlite;
|
13 |
+
|
14 |
+
|
15 |
+
struct Args {
|
16 |
+
std::string target_model = "../../models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin";
|
17 |
+
std::string imgs = "../baboon.png";
|
18 |
+
int invoke_nums = 10;
|
19 |
+
std::string model_type = "QNN";
|
20 |
+
};
|
21 |
+
|
22 |
+
|
23 |
+
Args parse_args(int argc, char* argv[]) {
|
24 |
+
Args args;
|
25 |
+
for (int i = 1; i < argc; ++i) {
|
26 |
+
std::string arg = argv[i];
|
27 |
+
if (arg == "--target_model" && i + 1 < argc) {
|
28 |
+
args.target_model = argv[++i];
|
29 |
+
} else if (arg == "--imgs" && i + 1 < argc) {
|
30 |
+
args.imgs = argv[++i];
|
31 |
+
} else if (arg == "--invoke_nums" && i + 1 < argc) {
|
32 |
+
args.invoke_nums = std::stoi(argv[++i]);
|
33 |
+
} else if (arg == "--model_type" && i + 1 < argc) {
|
34 |
+
args.model_type = argv[++i];
|
35 |
+
}
|
36 |
+
}
|
37 |
+
return args;
|
38 |
+
}
|
39 |
+
|
40 |
+
std::string to_lower(const std::string& str) {
|
41 |
+
std::string lower_str = str;
|
42 |
+
std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), [](unsigned char c) {
|
43 |
+
return std::tolower(c);
|
44 |
+
});
|
45 |
+
return lower_str;
|
46 |
+
}
|
47 |
+
|
48 |
+
int transpose(float* src, unsigned int* src_dims, unsigned int* tsp_dims, float* dest){
|
49 |
+
|
50 |
+
int current_coordinate[4] = {0, 0, 0, 0};
|
51 |
+
for(int a = 0; a < src_dims[0]; ++a){
|
52 |
+
current_coordinate[0] = a;
|
53 |
+
for(int b = 0; b < src_dims[1]; ++b){
|
54 |
+
current_coordinate[1] = b;
|
55 |
+
for(int c = 0; c < src_dims[2]; ++c){
|
56 |
+
current_coordinate[2] = c;
|
57 |
+
for(int d = 0; d < src_dims[3]; ++d){
|
58 |
+
current_coordinate[3] = d;
|
59 |
+
|
60 |
+
int old_index = current_coordinate[0]*src_dims[1]*src_dims[2]*src_dims[3] +
|
61 |
+
current_coordinate[1]*src_dims[2]*src_dims[3] +
|
62 |
+
current_coordinate[2]*src_dims[3] +
|
63 |
+
current_coordinate[3];
|
64 |
+
|
65 |
+
int new_index = current_coordinate[tsp_dims[0]]*src_dims[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
66 |
+
current_coordinate[tsp_dims[1]]*src_dims[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
67 |
+
current_coordinate[tsp_dims[2]]*src_dims[tsp_dims[3]] +
|
68 |
+
current_coordinate[tsp_dims[3]];
|
69 |
+
|
70 |
+
dest[new_index] = src[old_index];
|
71 |
+
}
|
72 |
+
}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
return EXIT_SUCCESS;
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
void save_output_image_from_nhwc(float* output) {
|
81 |
+
unsigned int H = 512;
|
82 |
+
unsigned int W = 512;
|
83 |
+
unsigned int C = 3;
|
84 |
+
// Step 1: clip [0,1]
|
85 |
+
std::vector<float> clipped(H * W * C);
|
86 |
+
for (int i = 0; i < H * W * C; ++i) {
|
87 |
+
clipped[i] = std::min(1.0f, std::max(0.0f, output[i]));
|
88 |
+
}
|
89 |
+
|
90 |
+
// Step 2: NHWC (H,W,C) to CHW (C,H,W)
|
91 |
+
unsigned int src_dims1[4] = {H, W, C, 1};
|
92 |
+
unsigned int tsp_dims1[4] = {2, 0, 1, 3};
|
93 |
+
std::vector<float> chw(C * H * W);
|
94 |
+
transpose(clipped.data(), src_dims1, tsp_dims1, chw.data());
|
95 |
+
|
96 |
+
// Step 3: RGB to BGR
|
97 |
+
std::vector<float> chw_bgr(C * H * W);
|
98 |
+
for (int h = 0; h < H; ++h) {
|
99 |
+
for (int w = 0; w < W; ++w) {
|
100 |
+
for (int c = 0; c < C; ++c) {
|
101 |
+
int src_index = c * H * W + h * W + w;
|
102 |
+
int dst_c = 2 - c;
|
103 |
+
int dst_index = dst_c * H * W + h * W + w;
|
104 |
+
chw_bgr[dst_index] = chw[src_index];
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
// Step 4: CHW to HWC
|
110 |
+
unsigned int src_dims2[4] = {C, H, W, 1};
|
111 |
+
unsigned int tsp_dims2[4] = {1, 2, 0, 3};
|
112 |
+
std::vector<float> hwc(H * W * C);
|
113 |
+
transpose(chw_bgr.data(), src_dims2, tsp_dims2, hwc.data());
|
114 |
+
|
115 |
+
// Step 5: Convert to CV_8UC3 image
|
116 |
+
cv::Mat result(H, W, CV_8UC3);
|
117 |
+
for (int y = 0; y < H; ++y) {
|
118 |
+
for (int x = 0; x < W; ++x) {
|
119 |
+
int idx = (y * W + x) * C;
|
120 |
+
uchar b = static_cast<uchar>(std::round(hwc[idx + 0] * 255.0f));
|
121 |
+
uchar g = static_cast<uchar>(std::round(hwc[idx + 1] * 255.0f));
|
122 |
+
uchar r = static_cast<uchar>(std::round(hwc[idx + 2] * 255.0f));
|
123 |
+
result.at<cv::Vec3b>(y, x) = cv::Vec3b(b, g, r);
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
// Save the image
|
128 |
+
cv::imwrite("./result_img.jpg", result);
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
int invoke(const Args& args) {
|
133 |
+
std::cout << "Start main ... ... Model Path: " << args.target_model << "\n"
|
134 |
+
<< "Image Path: " << args.imgs << "\n"
|
135 |
+
<< "Inference Nums: " << args.invoke_nums << "\n"
|
136 |
+
<< "Model Type: " << args.model_type << "\n";
|
137 |
+
Model* model = Model::create_instance(args.target_model);
|
138 |
+
if(model == nullptr){
|
139 |
+
printf("Create model failed !\n");
|
140 |
+
return EXIT_FAILURE;
|
141 |
+
}
|
142 |
+
Config* config = Config::create_instance();
|
143 |
+
if(config == nullptr){
|
144 |
+
printf("Create config failed !\n");
|
145 |
+
return EXIT_FAILURE;
|
146 |
+
}
|
147 |
+
config->implement_type = ImplementType::TYPE_LOCAL;
|
148 |
+
std::string model_type_lower = to_lower(args.model_type);
|
149 |
+
if (model_type_lower == "qnn"){
|
150 |
+
config->framework_type = FrameworkType::TYPE_QNN;
|
151 |
+
} else if (model_type_lower == "snpe2" || model_type_lower == "snpe") {
|
152 |
+
config->framework_type = FrameworkType::TYPE_SNPE2;
|
153 |
+
}
|
154 |
+
config->accelerate_type = AccelerateType::TYPE_DSP;
|
155 |
+
config->is_quantify_model = 1;
|
156 |
+
|
157 |
+
unsigned int model_h = 128;
|
158 |
+
unsigned int model_w = 128;
|
159 |
+
std::vector<std::vector<uint32_t>> input_shapes = {{1,model_h,model_w,3}};
|
160 |
+
std::vector<std::vector<uint32_t>> output_shapes = {{1,3,model_h*4,model_w*4}};
|
161 |
+
model->set_model_properties(input_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32, output_shapes, Aidlux::Aidlite::DataType::TYPE_FLOAT32);
|
162 |
+
std::unique_ptr<Interpreter> fast_interpreter = InterpreterBuilder::build_interpretper_from_model_and_config(model, config);
|
163 |
+
if(fast_interpreter == nullptr){
|
164 |
+
printf("build_interpretper_from_model_and_config failed !\n");
|
165 |
+
return EXIT_FAILURE;
|
166 |
+
}
|
167 |
+
int result = fast_interpreter->init();
|
168 |
+
if(result != EXIT_SUCCESS){
|
169 |
+
printf("interpreter->init() failed !\n");
|
170 |
+
return EXIT_FAILURE;
|
171 |
+
}
|
172 |
+
// load model
|
173 |
+
fast_interpreter->load_model();
|
174 |
+
if(result != EXIT_SUCCESS){
|
175 |
+
printf("interpreter->load_model() failed !\n");
|
176 |
+
return EXIT_FAILURE;
|
177 |
+
}
|
178 |
+
printf("detect model load success!\n");
|
179 |
+
|
180 |
+
cv::Mat frame = cv::imread(args.imgs);
|
181 |
+
if (frame.empty()) {
|
182 |
+
printf("detect image load failed!\n");
|
183 |
+
return 1;
|
184 |
+
}
|
185 |
+
printf("img_src cols: %d, img_src rows: %d\n", frame.cols, frame.rows);
|
186 |
+
cv::Mat input_data;
|
187 |
+
cv::Mat frame_clone = frame.clone();
|
188 |
+
cv::cvtColor(frame_clone, frame_clone, cv::COLOR_BGR2RGB);
|
189 |
+
cv::resize(frame_clone, frame_clone, cv::Size(model_w, model_h));
|
190 |
+
frame_clone.convertTo(input_data, CV_32FC3, 1.0 / 255.0);
|
191 |
+
|
192 |
+
float *outdata0 = nullptr;
|
193 |
+
std::vector<float> invoke_time;
|
194 |
+
for (int i = 0; i < args.invoke_nums; ++i) {
|
195 |
+
result = fast_interpreter->set_input_tensor(0, input_data.data);
|
196 |
+
if(result != EXIT_SUCCESS){
|
197 |
+
printf("interpreter->set_input_tensor() failed !\n");
|
198 |
+
return EXIT_FAILURE;
|
199 |
+
}
|
200 |
+
auto t1 = std::chrono::high_resolution_clock::now();
|
201 |
+
result = fast_interpreter->invoke();
|
202 |
+
auto t2 = std::chrono::high_resolution_clock::now();
|
203 |
+
std::chrono::duration<double> cost_time = t2 - t1;
|
204 |
+
invoke_time.push_back(cost_time.count() * 1000);
|
205 |
+
if(result != EXIT_SUCCESS){
|
206 |
+
printf("interpreter->invoke() failed !\n");
|
207 |
+
return EXIT_FAILURE;
|
208 |
+
}
|
209 |
+
uint32_t out_data_0 = 0;
|
210 |
+
result = fast_interpreter->get_output_tensor(0, (void**)&outdata0, &out_data_0);
|
211 |
+
if(result != EXIT_SUCCESS){
|
212 |
+
printf("interpreter->get_output_tensor() 1 failed !\n");
|
213 |
+
return EXIT_FAILURE;
|
214 |
+
}
|
215 |
+
|
216 |
+
}
|
217 |
+
|
218 |
+
float max_invoke_time = *std::max_element(invoke_time.begin(), invoke_time.end());
|
219 |
+
float min_invoke_time = *std::min_element(invoke_time.begin(), invoke_time.end());
|
220 |
+
float mean_invoke_time = std::accumulate(invoke_time.begin(), invoke_time.end(), 0.0f) / args.invoke_nums;
|
221 |
+
float var_invoketime = 0.0f;
|
222 |
+
for (auto time : invoke_time) {
|
223 |
+
var_invoketime += (time - mean_invoke_time) * (time - mean_invoke_time);
|
224 |
+
}
|
225 |
+
var_invoketime /= args.invoke_nums;
|
226 |
+
printf("=======================================\n");
|
227 |
+
printf("QNN inference %d times :\n --mean_invoke_time is %f \n --max_invoke_time is %f \n --min_invoke_time is %f \n --var_invoketime is %f\n",
|
228 |
+
args.invoke_nums, mean_invoke_time, max_invoke_time, min_invoke_time, var_invoketime);
|
229 |
+
printf("=======================================\n");
|
230 |
+
|
231 |
+
// post process
|
232 |
+
save_output_image_from_nhwc(outdata0);
|
233 |
+
|
234 |
+
|
235 |
+
fast_interpreter->destory();
|
236 |
+
return 0;
|
237 |
+
}
|
238 |
+
|
239 |
+
|
240 |
+
int main(int argc, char* argv[]) {
|
241 |
+
Args args = parse_args(argc, argv);
|
242 |
+
return invoke(args);
|
243 |
+
}
|
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ef9af1175914c55d210c01fdaa8d3acaf2d6f117b370ccc3f7d7b2351c16e3f
|
3 |
+
size 24006984
|
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/LR/baboon.png
ADDED
![]() |
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/__pycache__/RRDBNet_arch.cpython-38.pyc
ADDED
Binary file (3.2 kB). View file
|
|
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/__pycache__/RRDBNet_arch.cpython-39.pyc
ADDED
Binary file (3.22 kB). View file
|
|
model_farm_esrgan_qcs8550_qnn2.16_w8a16_aidlite/python/demo_qnn.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import glob
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
import aidlite
|
8 |
+
import os
|
9 |
+
|
10 |
+
class esrganQnn:
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
self.model = aidlite.Model.create_instance(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../models/m_RRDB_esrgan_x4_w8a16.qnn216.ctx.bin"))
|
14 |
+
if self.model is None:
|
15 |
+
print("Create model failed !")
|
16 |
+
return
|
17 |
+
|
18 |
+
self.config = aidlite.Config.create_instance()
|
19 |
+
if self.config is None:
|
20 |
+
print("build_interpretper_from_model_and_config failed !")
|
21 |
+
return
|
22 |
+
|
23 |
+
self.config.implement_type = aidlite.ImplementType.TYPE_LOCAL
|
24 |
+
self.config.framework_type = aidlite.FrameworkType.TYPE_QNN
|
25 |
+
|
26 |
+
self.config.accelerate_type = aidlite.AccelerateType.TYPE_DSP
|
27 |
+
self.config.is_quantify_model = 1
|
28 |
+
|
29 |
+
self.interpreter = aidlite.InterpreterBuilder.build_interpretper_from_model_and_config(self.model, self.config)
|
30 |
+
if self.interpreter is None:
|
31 |
+
print("build_interpretper_from_model_and_config failed !")
|
32 |
+
return
|
33 |
+
input_shapes = [[1, 128, 128,3]]
|
34 |
+
# input_shapes = [[1,3, 128, 128]]
|
35 |
+
output_shapes = [[1, 3,128*4,128*4]]
|
36 |
+
self.model.set_model_properties(input_shapes, aidlite.DataType.TYPE_FLOAT32,
|
37 |
+
output_shapes, aidlite.DataType.TYPE_FLOAT32)
|
38 |
+
|
39 |
+
if self.interpreter is None:
|
40 |
+
print("build_interpretper_from_model_and_config failed !")
|
41 |
+
result = self.interpreter.init()
|
42 |
+
if result != 0:
|
43 |
+
print(f"interpreter init failed !")
|
44 |
+
result = self.interpreter.load_model()
|
45 |
+
if result != 0:
|
46 |
+
print("interpreter load model failed !")
|
47 |
+
|
48 |
+
print(" model load success!")
|
49 |
+
|
50 |
+
def __call__(self, input):
|
51 |
+
self.interpreter.set_input_tensor(0,input)
|
52 |
+
invoke_time=[]
|
53 |
+
invoke_nums =10
|
54 |
+
for i in range(invoke_nums):
|
55 |
+
result = self.interpreter.set_input_tensor(0, input.data)
|
56 |
+
if result != 0:
|
57 |
+
print("interpreter set_input_tensor() failed")
|
58 |
+
t1=time.time()
|
59 |
+
result = self.interpreter.invoke()
|
60 |
+
cost_time = (time.time()-t1)*1000
|
61 |
+
invoke_time.append(cost_time)
|
62 |
+
|
63 |
+
max_invoke_time = max(invoke_time)
|
64 |
+
min_invoke_time = min(invoke_time)
|
65 |
+
mean_invoke_time = sum(invoke_time)/invoke_nums
|
66 |
+
var_invoketime=np.var(invoke_time)
|
67 |
+
print("====================================")
|
68 |
+
print(f"QNN invoke time:\n --mean_invoke_time is {mean_invoke_time} \n --max_invoke_time is {max_invoke_time} \n --min_invoke_time is {min_invoke_time} \n --var_invoketime is {var_invoketime}")
|
69 |
+
print("====================================")
|
70 |
+
features_0 = self.interpreter.get_output_tensor(0).reshape(1, 128*4,128*4,3).copy()
|
71 |
+
|
72 |
+
return features_0
|
73 |
+
|
74 |
+
|
75 |
+
def cosine_similarity(v1, v2):
|
76 |
+
v1 = v1.flatten()
|
77 |
+
v2 = v2.flatten()
|
78 |
+
# 计算点积
|
79 |
+
dot_product = np.dot(v1, v2)
|
80 |
+
# 计算每个向量的模长
|
81 |
+
norm_v1 = np.linalg.norm(v1)
|
82 |
+
norm_v2 = np.linalg.norm(v2)
|
83 |
+
# 防止除以零错误
|
84 |
+
norm_product = np.maximum(norm_v1 * norm_v2, 1e-8)
|
85 |
+
# 计算余弦相似度
|
86 |
+
return dot_product / norm_product
|
87 |
+
|
88 |
+
esrgan_model= esrganQnn()
|
89 |
+
test_img_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'LR/*')
|
90 |
+
|
91 |
+
idx = 0
|
92 |
+
for path in glob.glob(test_img_folder):
|
93 |
+
idx += 1
|
94 |
+
base = osp.splitext(osp.basename(path))[0]
|
95 |
+
print(idx, base)
|
96 |
+
# read images
|
97 |
+
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
98 |
+
img = cv2.resize(img, (128,128))
|
99 |
+
img = img * 1.0 / 255
|
100 |
+
img = img[:, :, [2, 1, 0]]
|
101 |
+
img_LR = np.expand_dims(img,axis=0).astype(np.float32)
|
102 |
+
print("img_LR shape:",img_LR.shape)
|
103 |
+
|
104 |
+
t0 = time.time()
|
105 |
+
output = esrgan_model(img_LR) #.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
106 |
+
|
107 |
+
output = np.clip(output[0], 0, 1)
|
108 |
+
output = np.transpose(output, (2, 0, 1))
|
109 |
+
use_time = round((time.time() - t0) * 1000, 2)
|
110 |
+
print(f"Inference_time:{use_time} ms")
|
111 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
112 |
+
output = (output * 255.0).round()
|
113 |
+
cv2.imwrite(os.path.join(os.path.dirname(os.path.abspath(__file__)),'{:s}_rlt_16qnn.png'.format(base)), output)
|
114 |
+
print("ok")
|
115 |
+
esrgan_model.interpreter.destory()
|