File size: 1,791 Bytes
5f26ed9
 
 
 
6710f82
 
 
 
5f26ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: other
license_name: aplux-model-farm-license
license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
pipeline_tag: image-classification
tags:
- AIoT
- QNN
---

![](https://aiot.aidlux.com/_next/image?url=%2Fapi%2Fv1%2Ffiles%2Fmodel%2Fcover%2F%25E5%259B%25BE-17.png&w=640&q=75)

## EfficientNet-B0: Image Classification

EfficientNet-B0 is the baseline model in the EfficientNet series introduced by Google in 2019. EfficientNet employs a "compound scaling" method, which jointly optimizes the network's depth, width, and resolution to achieve greater computational efficiency and accuracy. EfficientNet-B0 utilizes the Mobile Inverted Bottleneck Convolution (MBConv) module along with depthwise separable convolutions, significantly reducing parameters and computational cost. Despite being the smallest model in the series, EfficientNet-B0 performs excellently across various computer vision tasks, delivering high accuracy while maintaining low resource requirements, making it ideal for mobile devices and edge computing in resource-constrained environments.

### Source model

- Input shape: 224x224
- Number of parameters: 5.04M
- Model size: 20.16M
- Output shape: 1x1000

Source model repository: [EfficientNet-B0](https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py)

## Performance Reference

Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)

## Inference & Model Conversion

Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)

## License

- Source Model: [BSD-3-CLAUSE](https://github.com/pytorch/vision/blob/main/LICENSE)

- Deployable Model: [APLUX-MODEL-FARM-LICENSE](https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf)