File size: 1,585 Bytes
f6ca579
 
 
 
350c577
 
 
 
f6ca579
 
2cee26a
f6ca579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: other
license_name: aplux-model-farm-license
license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
pipeline_tag: image-segmentation
tags:
- AIoT
- QNN
---

![](https://aiot.aidlux.com/_next/image?url=%2Fapi%2Fv1%2Ffiles%2Fmodel%2Fcover%2F20250613112054_seg.png&w=640&q=75)

## FFNet-54S: Semantic Segmentation

FFNets are families of Simple and Efficient Architectures, which demonstrate the effectiveness of for the task of Semantic Image Segmentation. The model definitions and pre-trained weights for the models introduced in the paper Simple and Efficient Architectures for Semantic Segmentation, published at the Efficient Deep Learning for Computer Vision Workshop at CVPR 2022. FFNet stands for "Fuss-Free Networks", and utilize a simple ResNet-like backbone, and a tiny convolution-only head to produce multi-scale features that are useful for various tasks.

### Source model

- Input shape: 1x3x512x1024   
- Number of parameters:18.04M
- Model size:69.4MB
- Output shape: 1x19x64x128

Source model repository: [FFNet-54S](https://github.com/Qualcomm-AI-research/FFNet)

## Performance Reference

Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)

## Inference & Model Conversion

Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)

## License

- Source Model: [BSD-3-CLAUSE](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE)

- Deployable Model: [APLUX-MODEL-FARM-LICENSE](https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf)