File size: 1,859 Bytes
49e36db
 
 
 
282ce9d
 
 
 
49e36db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: other
license_name: aplux-model-farm-license
license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
pipeline_tag: image-classification
tags:
- AIoT
- QNN
---

![](https://aiot.aidlux.com/_next/image?url=%2Fapi%2Fv1%2Ffiles%2Fmodel%2Fcover%2F%25E5%259B%25BE-45.png&w=640&q=75)

## MobileNet-v3-Small: Image Classification

MobileNet-V3-Small is the lightweight version in the third generation of the MobileNet series, designed for resource-constrained devices like mobile and edge devices. Based on automated machine learning (AutoML) techniques, MobileNet-V3-Small incorporates depthwise separable convolutions, a hard-swish activation function, and a Squeeze-and-Excitation (SE) attention mechanism to boost performance and efficiency. Compared to MobileNet-V3-Large, MobileNet-V3-Small has a more compact architecture with fewer parameters, making it suitable for efficient image classification, object detection, and other tasks in low-power environments. Common applications on mobile include real-time face recognition, gesture control, and image classification, delivering high accuracy with fast processing capabilities.

### Source model

- Input shape: 224x224
- Number of parameters: 2.42M
- Model size: 9.71M
- Output shape: 1x1000

Source model repository: [MobileNet-v3-Small](https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py)

## Performance Reference

Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)

## Inference & Model Conversion

Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)

## License

- Source Model: [BSD-3-CLAUSE](https://github.com/pytorch/vision/blob/main/LICENSE)

- Deployable Model: [APLUX-MODEL-FARM-LICENSE](https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf)