File size: 3,344 Bytes
8227ec8 72596b6 4c575c1 8227ec8 9a8d3ef 8227ec8 4c575c1 8227ec8 2babd09 8227ec8 9a8d3ef 4ee11bb 8227ec8 4ee11bb 9a8d3ef 8227ec8 4ee11bb 8227ec8 4ee11bb 8227ec8 4ee11bb 8227ec8 4ee11bb da4f6d9 8227ec8 4dcf8e1 8227ec8 4dcf8e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: cc-by-nc-sa-4.0
datasets:
- mwalmsley/gz2
metrics:
- accuracy
---
# Important Disclaimer
This model is a part of my **bachelor thesis** (VUT in Brno, FIT).
# CosmoFormer Model
This is a **TorchScript** version of our CrossFormer-based image classification model.
It was trained on [Galaxy Zoo 2 (GZ2)](https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/about/research) data to classify galaxy morphologies (spirals, ellipticals, and other morphological types).
I also leveraged the [galaxy-datasets pip package](https://github.com/mwalmsley/galaxy-datasets) by [Michael Walmsley](https://github.com/mwalmsley) for data loading and handling.
## Model Details
- **Architecture:** [CrossFormer](https://github.com/lucidrains/vit-pytorch) variant
- **Model accuracy:** 75%
- **Input Resolution:** 224×224 RGB
- **Number of Classes:** 8 (Depends on your label encoder e.g., galaxy morphology classes)
- **Checkpoint Format:** TorchScript (`.pt`) file
- **Frameworks:** Originally in PyTorch with `vit_pytorch`. Now self-contained in TorchScript.
## Usage
You can load and run this model **directly in PyTorch** **without** installing `vit_pytorch`. Just make sure you have an environment with:
- `torch` >= 1.13.0
- `torchvision` (optional, if you need standard transforms)
### Quick Start Example
```python
import torch
import torchvision.transforms.v2 as v2
from huggingface_hub import hf_hub_download
from PIL import Image
label_mapping = {
0: 'barred_spiral',
1: 'edge_on_disk',
2: 'featured_without_bar_or_spiral',
3: 'irregular',
4: 'smooth_cigar',
5: 'smooth_inbetween',
6: 'smooth_round',
7: 'unbarred_spiral'
}
# 1. Define the path to the hugging face repo
ts_path = hf_hub_download(
repo_id="artursultanov/cosmoformer-model",
filename="cosmoformer_traced_cpu.pt"
)
# 2. Load the model from the hugging face repo
model = torch.jit.load(ts_path, map_location="cpu")
model.eval()
# 3. Define image transform to match model's internal representation
transform = v2.Compose([
v2.Resize((224, 224)),
v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])
])
# 4. Load the image
image_path = "test_image.jpg"
image = Image.open(image_path).convert("RGB")
tensor = transform(image) # shape [3, 224, 224]
tensor = tensor.unsqueeze(0) shape [1, 3, 224, 224]
# 5. Inference
with torch.no_grad():
output = model(tensor)
predicted_idx = torch.argmax(output, dim=1).item()
predicted_label = label_mapping[predicted_idx]
print("Predicted class:", predicted_label)
```
```
@article{10.1093/mnras/stt1458,
author = {Willett, Kyle W. and Lintott, Chris J. and Bamford, Steven P. and Masters, Karen L. and Simmons, Brooke D. and Casteels, Kevin R. V. and Edmondson, Edward M. and Fortson, Lucy F. and Kaviraj, Sugata and Keel, William C. and Melvin, Thomas and Nichol, Robert C. and Raddick, M. Jordan and Schawinski, Kevin and Simpson, Robert J. and Skibba, Ramin A. and Smith, Arfon M. and Thomas, Daniel},
title = "{Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {435},
number = {4},
pages = {2835-2860},
year = {2013},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stt1458},
}
``` |