File size: 2,201 Bytes
021f213 fdf6088 8cdb8a5 fdf6088 8cdb8a5 fdf6088 8cdb8a5 fdf6088 8cdb8a5 fdf6088 8cdb8a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: mit
language:
- en
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
pipeline_tag: text-generation
library_name: transformers
---
# π¨ wrapbow.ai β Creative Copy & Ideation LLM
**Powered by Mistral 7B | Tuned by Ashish Kumar**
`wrapbow.ai` is a domain-adapted LLM built on **Mistral-7B-Instruct-v0.2**, finely tuned to generate high-quality marketing, educational, and digital experience content. Designed for creators, marketers, startups, and educators β this model brings your prompts to life with flair and contextual intelligence.
---
## β¨ Primary Use Cases
- πͺ **Creative Ad Banner & Copy Generation**
Generate punchy headlines, CTAs, and ad taglines for static, HTML5, or video banners.
- π’ **Promotional Messaging**
Ideal for personalized offers, flash sale announcements, and event-based campaigns.
- π **Quiz Question Generation** *(for platforms like [pinkslip.in](https://pinkslip.in))*
Automatically generate skill-based, gamified quiz questions for job-seekers and upskilling portals.
- π§ **Prompt-Driven Content Ideation**
Use it to brainstorm campaign themes, landing page hooks, or social content angles.
- ποΈ **Brand Messaging & Positioning Lines**
Write startup one-liners, value propositions, and feature-focused marketing blurbs.
- π§© **Use in EdTech, HRTech, and FinTech Landing Pages**
Helps founders auto-generate customized landing copy for high conversion across sectors.
---
## β
Base Model
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
---
## π‘ Example Usage (Python)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ashishkummar/wrapbow.ai", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ashishkummar/wrapbow.ai", trust_remote_code=True)
prompt = "Generate a banner line for 50% discount on women's fashion"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## π License
MIT β free to use, remix, and build upon.
|