Abdul Fatir Ansari
commited on
Commit
·
6e0fc4c
1
Parent(s):
e149d4e
Update README
Browse files
README.md
CHANGED
|
@@ -12,7 +12,7 @@ tags:
|
|
| 12 |
|
| 13 |
# Chronos⚡️-Tiny
|
| 14 |
|
| 15 |
-
|
| 16 |
|
| 17 |
|
| 18 |
<div align="center">
|
|
@@ -29,10 +29,14 @@ Pre-release of Chronos⚡️ (read: Chronos-Bolt) pretrained time series forecas
|
|
| 29 |
|
| 30 |
## Usage
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
```
|
| 35 |
-
pip install
|
| 36 |
```
|
| 37 |
|
| 38 |
```python
|
|
@@ -40,16 +44,14 @@ from autogluon.timeseries import TimeSeriesPredictor, TimeSeriesDataFrame
|
|
| 40 |
|
| 41 |
df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
|
| 42 |
|
| 43 |
-
|
| 44 |
df,
|
| 45 |
hyperparameters={
|
| 46 |
-
"Chronos":
|
| 47 |
-
{"model_path": "autogluon/chronos-bolt-tiny"},
|
| 48 |
-
]
|
| 49 |
},
|
| 50 |
-
).predict(
|
| 51 |
-
df
|
| 52 |
)
|
|
|
|
|
|
|
| 53 |
```
|
| 54 |
|
| 55 |
## Citation
|
|
|
|
| 12 |
|
| 13 |
# Chronos⚡️-Tiny
|
| 14 |
|
| 15 |
+
Chronos⚡️ (read: Chronos-Bolt) is a family of pretrained time series forecasting models which can be used for zero-shot forecasting. Chronos⚡️ models are based on the [T5 architecture](https://arxiv.org/abs/1910.10683) and are available in the following sizes.
|
| 16 |
|
| 17 |
|
| 18 |
<div align="center">
|
|
|
|
| 29 |
|
| 30 |
## Usage
|
| 31 |
|
| 32 |
+
> [!WARNING]
|
| 33 |
+
> Chronos⚡️ models will be available in the next stable release of AutoGluon, so the following instructions will only work once AutoGluon 1.2 has been released.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
A minimal example showing how to perform zero-shot inference using Chronos⚡️ with AutoGluon:
|
| 37 |
|
| 38 |
```
|
| 39 |
+
pip install autogluon
|
| 40 |
```
|
| 41 |
|
| 42 |
```python
|
|
|
|
| 44 |
|
| 45 |
df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
|
| 46 |
|
| 47 |
+
predictor = TimeSeriesPredictor(prediction_length=48).fit(
|
| 48 |
df,
|
| 49 |
hyperparameters={
|
| 50 |
+
"Chronos": {"model_path": "autogluon/chronos-bolt-tiny"},
|
|
|
|
|
|
|
| 51 |
},
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
+
|
| 54 |
+
predictions = predictor.predict(df)
|
| 55 |
```
|
| 56 |
|
| 57 |
## Citation
|