File size: 3,130 Bytes
066408c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-google-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4732
- Wer: 0.3300

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.2982        | 1.0   | 500   | 1.3852          | 0.9990 |
| 0.8067        | 2.01  | 1000  | 0.5318          | 0.5140 |
| 0.4393        | 3.01  | 1500  | 0.4500          | 0.4570 |
| 0.3007        | 4.02  | 2000  | 0.4259          | 0.4091 |
| 0.2306        | 5.02  | 2500  | 0.4092          | 0.3962 |
| 0.1845        | 6.02  | 3000  | 0.3949          | 0.3834 |
| 0.1516        | 7.03  | 3500  | 0.4144          | 0.3759 |
| 0.1347        | 8.03  | 4000  | 0.3958          | 0.3689 |
| 0.1217        | 9.04  | 4500  | 0.4455          | 0.3754 |
| 0.1039        | 10.04 | 5000  | 0.4228          | 0.3684 |
| 0.0921        | 11.04 | 5500  | 0.4310          | 0.3566 |
| 0.082         | 12.05 | 6000  | 0.4549          | 0.3617 |
| 0.078         | 13.05 | 6500  | 0.4535          | 0.3661 |
| 0.0668        | 14.06 | 7000  | 0.4726          | 0.3557 |
| 0.0648        | 15.06 | 7500  | 0.4414          | 0.3512 |
| 0.0581        | 16.06 | 8000  | 0.4781          | 0.3548 |
| 0.057         | 17.07 | 8500  | 0.4626          | 0.3588 |
| 0.0532        | 18.07 | 9000  | 0.5065          | 0.3495 |
| 0.0442        | 19.08 | 9500  | 0.4645          | 0.3390 |
| 0.0432        | 20.08 | 10000 | 0.4786          | 0.3466 |
| 0.0416        | 21.08 | 10500 | 0.4487          | 0.3425 |
| 0.0337        | 22.09 | 11000 | 0.4878          | 0.3416 |
| 0.0305        | 23.09 | 11500 | 0.4787          | 0.3413 |
| 0.0319        | 24.1  | 12000 | 0.4707          | 0.3395 |
| 0.0262        | 25.1  | 12500 | 0.4875          | 0.3345 |
| 0.0266        | 26.1  | 13000 | 0.4801          | 0.3343 |
| 0.025         | 27.11 | 13500 | 0.4926          | 0.3320 |
| 0.022         | 28.11 | 14000 | 0.4894          | 0.3313 |
| 0.0227        | 29.12 | 14500 | 0.4732          | 0.3300 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1