--- license: gpl-3.0 datasets: - karpathy/tiny_shakespeare language: - en pipeline_tag: text-generation --- ## Usage ```seq_length = 32 batch_size = 16 embed_dim = 256 num_heads = 4 ff_dim = 512 num_layers = 2 noise_prob = 0.3 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1)] class TransformerBlock(nn.Module): def __init__(self, embed_dim, num_heads, ff_dim): super().__init__() self.attention = nn.MultiheadAttention(embed_dim, num_heads) self.norm1 = nn.LayerNorm(embed_dim) self.ff = nn.Sequential( nn.Linear(embed_dim, ff_dim), nn.ReLU(), nn.Linear(ff_dim, embed_dim) ) self.norm2 = nn.LayerNorm(embed_dim) def forward(self, x): attn_output, _ = self.attention(x, x, x) x = self.norm1(x + attn_output) ff_output = self.ff(x) return self.norm2(x + ff_output) class DenoisingTransformer(nn.Module): def __init__(self, vocab_size, embed_dim, num_heads, ff_dim, num_layers): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.positional_encoding = PositionalEncoding(embed_dim) self.transformer_blocks = nn.ModuleList([ TransformerBlock(embed_dim, num_heads, ff_dim) for _ in range(num_layers) ]) self.fc = nn.Linear(embed_dim, vocab_size) def forward(self, x): x = self.embedding(x) x = self.positional_encoding(x) for block in self.transformer_blocks: x = block(x) return self.fc(x) def load_model(path, device='cpu'): checkpoint = torch.load(path, map_location=device) hp = checkpoint['hyperparameters'] model = DenoisingTransformer( hp['vocab_size'], hp['embed_dim'], hp['num_heads'], hp['ff_dim'], hp['num_layers'] ).to(device) model.load_state_dict(checkpoint['model_state_dict']) return model, checkpoint['word2idx'], checkpoint['idx2word'] loaded_model, word2idx, idx2word = load_model('denoising_transformer.pth', device=device) print("Model loaded successfully!") print(f"Model device: {next(loaded_model.parameters()).device}")```