--- library_name: efficient-context language: code tags: - context-optimization - llm - cpu-optimization - resource-constrained - memory-management - python license: mit datasets: - None --- # efficient-context A Python library for optimizing LLM context handling in CPU-constrained environments. ## Overview `efficient-context` addresses the challenge of working with large language models (LLMs) on CPU-only and memory-limited systems by providing efficient context management strategies. The library focuses on: - **Context Compression**: Reduce memory requirements while preserving information quality - **Semantic Chunking**: Go beyond token-based approaches for more effective context management - **Retrieval Optimization**: Minimize context size through intelligent retrieval strategies - **Memory Management**: Handle large contexts on limited hardware resources ## Installation ```bash pip install efficient-context ``` ## Quick Start ```python from efficient_context import ContextManager from efficient_context.compression import SemanticDeduplicator from efficient_context.chunking import SemanticChunker from efficient_context.retrieval import CPUOptimizedRetriever # Initialize a context manager with custom strategies context_manager = ContextManager( compressor=SemanticDeduplicator(threshold=0.85), chunker=SemanticChunker(chunk_size=256), retriever=CPUOptimizedRetriever(embedding_model="lightweight") ) # Add documents to your context context_manager.add_documents(documents) # Generate optimized context for a query optimized_context = context_manager.generate_context(query="Tell me about the climate impact of renewable energy") # Use the optimized context with your LLM response = your_llm_model.generate(prompt=prompt, context=optimized_context) ``` ## Features ### Context Compression - Semantic deduplication to remove redundant information - Importance-based pruning that keeps critical information - Automatic summarization of less relevant sections ### Advanced Chunking - Semantic chunking that preserves logical units - Adaptive chunk sizing based on content complexity - Chunk relationships mapping for coherent retrieval ### Retrieval Optimization - Lightweight embedding models optimized for CPU - Tiered retrieval strategies (local vs. remote) - Query-aware context assembly ### Memory Management - Progressive loading/unloading of context - Streaming context processing - Memory-aware caching strategies ## Maintainer This project is maintained by [Biswanath Roul](https://github.com/biswanathroul) ## License MIT