|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import torch | 
					
						
						|  | import glob | 
					
						
						|  | import math | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | from collections import OrderedDict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import deepspeed | 
					
						
						|  | from deepspeed.utils import logger | 
					
						
						|  | from deepspeed.checkpoint.constants import (DS_VERSION, | 
					
						
						|  | OPTIMIZER_STATE_DICT, | 
					
						
						|  | PARAM_SHAPES, | 
					
						
						|  | SINGLE_PARTITION_OF_FP32_GROUPS, | 
					
						
						|  | FP32_FLAT_GROUPS, | 
					
						
						|  | ZERO_STAGE, | 
					
						
						|  | PARTITION_COUNT, | 
					
						
						|  | PARAM_SHAPES, | 
					
						
						|  | BUFFER_NAMES) | 
					
						
						|  |  | 
					
						
						|  | debug = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = torch.device('cpu') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def atoi(text): | 
					
						
						|  | return int(text) if text.isdigit() else text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def natural_keys(text): | 
					
						
						|  | ''' | 
					
						
						|  | alist.sort(key=natural_keys) sorts in human order | 
					
						
						|  | http://nedbatchelder.com/blog/200712/human_sorting.html | 
					
						
						|  | (See Toothy's implementation in the comments) | 
					
						
						|  | ''' | 
					
						
						|  | return [atoi(c) for c in re.split(r'(\d+)', text)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model_state_file(checkpoint_dir, zero_stage): | 
					
						
						|  | if not os.path.isdir(checkpoint_dir): | 
					
						
						|  | raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if zero_stage == 2: | 
					
						
						|  | file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") | 
					
						
						|  | elif zero_stage == 3: | 
					
						
						|  | file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") | 
					
						
						|  |  | 
					
						
						|  | if not os.path.exists(file): | 
					
						
						|  | raise FileNotFoundError(f"can't find model states file at '{file}'") | 
					
						
						|  |  | 
					
						
						|  | return file | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_optim_files(checkpoint_dir): | 
					
						
						|  |  | 
					
						
						|  | optim_files = sorted(glob.glob(os.path.join(checkpoint_dir, | 
					
						
						|  | "*_optim_states.pt")), | 
					
						
						|  | key=natural_keys) | 
					
						
						|  |  | 
					
						
						|  | if len(optim_files) == 0: | 
					
						
						|  | raise FileNotFoundError( | 
					
						
						|  | f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'") | 
					
						
						|  |  | 
					
						
						|  | return optim_files | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_model_state(file): | 
					
						
						|  | state_dict = torch.load(file, map_location=device) | 
					
						
						|  |  | 
					
						
						|  | if BUFFER_NAMES not in state_dict: | 
					
						
						|  | raise ValueError(f"{file} is not a model state checkpoint") | 
					
						
						|  | buffer_names = state_dict[BUFFER_NAMES] | 
					
						
						|  | if debug: | 
					
						
						|  | print("Found buffers:", buffer_names) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buffers = { | 
					
						
						|  | k: v.float() | 
					
						
						|  | for k, | 
					
						
						|  | v in state_dict["module"].items() if k in buffer_names | 
					
						
						|  | } | 
					
						
						|  | param_shapes = state_dict[PARAM_SHAPES] | 
					
						
						|  |  | 
					
						
						|  | ds_version = state_dict.get(DS_VERSION, None) | 
					
						
						|  |  | 
					
						
						|  | return buffers, param_shapes, ds_version | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_optim_states(files, ds_checkpoint_dir): | 
					
						
						|  |  | 
					
						
						|  | total_files = len(files) | 
					
						
						|  | state_dicts = [] | 
					
						
						|  | for f in files: | 
					
						
						|  | state_dicts.append(torch.load(f, map_location=device)) | 
					
						
						|  |  | 
					
						
						|  | if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: | 
					
						
						|  | raise ValueError(f"{files[0]} is not a zero checkpoint") | 
					
						
						|  | zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] | 
					
						
						|  | world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if type(world_size) is list: | 
					
						
						|  | world_size = max(world_size) | 
					
						
						|  |  | 
					
						
						|  | if world_size != total_files: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " | 
					
						
						|  | "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if zero_stage == 2: | 
					
						
						|  | fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS | 
					
						
						|  | elif zero_stage == 3: | 
					
						
						|  | fp32_groups_key = FP32_FLAT_GROUPS | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"unknown zero stage {zero_stage}") | 
					
						
						|  |  | 
					
						
						|  | if zero_stage == 2: | 
					
						
						|  | fp32_flat_groups = [ | 
					
						
						|  | state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] | 
					
						
						|  | for i in range(len(state_dicts)) | 
					
						
						|  | ] | 
					
						
						|  | elif zero_stage == 3: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fp32_flat_groups = [ | 
					
						
						|  | torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], | 
					
						
						|  | 0) for i in range(len(state_dicts)) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | return zero_stage, world_size, fp32_flat_groups | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): | 
					
						
						|  | """ | 
					
						
						|  | Returns fp32 state_dict reconstructed from ds checkpoint | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") | 
					
						
						|  |  | 
					
						
						|  | optim_files = get_optim_files(ds_checkpoint_dir) | 
					
						
						|  | zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) | 
					
						
						|  | print( | 
					
						
						|  | f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") | 
					
						
						|  |  | 
					
						
						|  | model_file = get_model_state_file(ds_checkpoint_dir, zero_stage) | 
					
						
						|  | buffers, param_shapes, ds_version = parse_model_state(model_file) | 
					
						
						|  | print(f'Parsing checkpoint created by deepspeed=={ds_version}') | 
					
						
						|  |  | 
					
						
						|  | if zero_stage == 2: | 
					
						
						|  | return _get_fp32_state_dict_from_zero2_checkpoint(world_size, | 
					
						
						|  | param_shapes, | 
					
						
						|  | fp32_flat_groups, | 
					
						
						|  | buffers) | 
					
						
						|  | elif zero_stage == 3: | 
					
						
						|  | return _get_fp32_state_dict_from_zero3_checkpoint(world_size, | 
					
						
						|  | param_shapes, | 
					
						
						|  | fp32_flat_groups, | 
					
						
						|  | buffers) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_fp32_state_dict_from_zero2_checkpoint(world_size, | 
					
						
						|  | param_shapes, | 
					
						
						|  | fp32_flat_groups, | 
					
						
						|  | buffers): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | for i in range(world_size): | 
					
						
						|  | for j in range(len(fp32_flat_groups[0])): | 
					
						
						|  | print( | 
					
						
						|  | f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_param_groups = len(fp32_flat_groups[0]) | 
					
						
						|  | merged_single_partition_of_fp32_groups = [] | 
					
						
						|  | for i in range(num_param_groups): | 
					
						
						|  | merged_partitions = [sd[i] for sd in fp32_flat_groups] | 
					
						
						|  | full_single_fp32_vector = torch.cat(merged_partitions, 0) | 
					
						
						|  | merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) | 
					
						
						|  | avail_numel = sum([ | 
					
						
						|  | full_single_fp32_vector.numel() | 
					
						
						|  | for full_single_fp32_vector in merged_single_partition_of_fp32_groups | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | wanted_params = sum([len(shapes) for shapes in param_shapes]) | 
					
						
						|  | wanted_numel = sum( | 
					
						
						|  | [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) | 
					
						
						|  |  | 
					
						
						|  | print(f"Have {avail_numel} numels to process.") | 
					
						
						|  | print(f"Need {wanted_numel} numels in {wanted_params} params.") | 
					
						
						|  |  | 
					
						
						|  | state_dict = OrderedDict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict.update(buffers) | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"added {len(buffers)} buffers") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | total_numel = 0 | 
					
						
						|  | total_params = 0 | 
					
						
						|  | for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): | 
					
						
						|  | offset = 0 | 
					
						
						|  | avail_numel = full_single_fp32_vector.numel() | 
					
						
						|  | for name, shape in shapes.items(): | 
					
						
						|  |  | 
					
						
						|  | unpartitioned_numel = shape.numel() | 
					
						
						|  | total_numel += unpartitioned_numel | 
					
						
						|  | total_params += 1 | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print( | 
					
						
						|  | f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} " | 
					
						
						|  | ) | 
					
						
						|  | state_dict[name] = full_single_fp32_vector.narrow( | 
					
						
						|  | 0, | 
					
						
						|  | offset, | 
					
						
						|  | unpartitioned_numel).view(shape) | 
					
						
						|  | offset += unpartitioned_numel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | align_to = 2 * world_size | 
					
						
						|  |  | 
					
						
						|  | def zero2_align(x): | 
					
						
						|  | return align_to * math.ceil(x / align_to) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"original offset={offset}, avail_numel={avail_numel}") | 
					
						
						|  |  | 
					
						
						|  | offset = zero2_align(offset) | 
					
						
						|  | avail_numel = zero2_align(avail_numel) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"aligned  offset={offset}, avail_numel={avail_numel}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if offset != avail_numel: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"consumed {offset} numels out of {avail_numel} - something is wrong") | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def zero3_partitioned_param_info(unpartitioned_numel, world_size): | 
					
						
						|  | remainder = unpartitioned_numel % world_size | 
					
						
						|  | padding_numel = (world_size - remainder) if remainder else 0 | 
					
						
						|  | partitioned_numel = math.ceil(unpartitioned_numel / world_size) | 
					
						
						|  | return partitioned_numel, padding_numel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_fp32_state_dict_from_zero3_checkpoint(world_size, | 
					
						
						|  | param_shapes, | 
					
						
						|  | fp32_flat_groups, | 
					
						
						|  | buffers): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | avail_numel = fp32_flat_groups[0].numel() * world_size | 
					
						
						|  |  | 
					
						
						|  | param_shapes = {k: v for d in param_shapes for k, v in d.items()} | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | for i in range(world_size): | 
					
						
						|  | print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") | 
					
						
						|  |  | 
					
						
						|  | wanted_params = len(param_shapes) | 
					
						
						|  | wanted_numel = sum(shape.numel() for shape in param_shapes.values()) | 
					
						
						|  |  | 
					
						
						|  | print(f"Have {avail_numel} numels to process.") | 
					
						
						|  | print(f"Need {wanted_numel} numels in {wanted_params} params.") | 
					
						
						|  |  | 
					
						
						|  | state_dict = OrderedDict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict.update(buffers) | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"added {len(buffers)} buffers") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | offset = 0 | 
					
						
						|  | total_numel = 0 | 
					
						
						|  | total_params = 0 | 
					
						
						|  | for name, shape in param_shapes.items(): | 
					
						
						|  |  | 
					
						
						|  | unpartitioned_numel = shape.numel() | 
					
						
						|  | total_numel += unpartitioned_numel | 
					
						
						|  | total_params += 1 | 
					
						
						|  |  | 
					
						
						|  | partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print( | 
					
						
						|  | f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict[name] = torch.cat( | 
					
						
						|  | tuple(fp32_flat_groups[i].narrow(0, | 
					
						
						|  | offset, | 
					
						
						|  | partitioned_numel) | 
					
						
						|  | for i in range(world_size)), | 
					
						
						|  | 0).narrow(0, | 
					
						
						|  | 0, | 
					
						
						|  | unpartitioned_numel).view(shape) | 
					
						
						|  | offset += partitioned_numel | 
					
						
						|  |  | 
					
						
						|  | offset *= world_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if offset != avail_numel: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"consumed {offset} numels out of {avail_numel} - something is wrong") | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): | 
					
						
						|  | """ | 
					
						
						|  | Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with | 
					
						
						|  | ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example | 
					
						
						|  | via a model hub. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``checkpoint_dir``: path to the desired checkpoint folder | 
					
						
						|  | - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | - pytorch ``state_dict`` | 
					
						
						|  |  | 
					
						
						|  | Note: this approach may not work if your application doesn't have sufficient free CPU memory and | 
					
						
						|  | you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with | 
					
						
						|  | the checkpoint. | 
					
						
						|  |  | 
					
						
						|  | A typical usage might be :: | 
					
						
						|  |  | 
					
						
						|  | from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint | 
					
						
						|  | # do the training and checkpoint saving | 
					
						
						|  | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu | 
					
						
						|  | model = model.cpu() # move to cpu | 
					
						
						|  | model.load_state_dict(state_dict) | 
					
						
						|  | # submit to model hub or save the model to share with others | 
					
						
						|  |  | 
					
						
						|  | In this example the ``model`` will no longer be usable in the deepspeed context of the same | 
					
						
						|  | application. i.e. you will need to re-initialize the deepspeed engine, since | 
					
						
						|  | ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | 
					
						
						|  |  | 
					
						
						|  | If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | if tag is None: | 
					
						
						|  | latest_path = os.path.join(checkpoint_dir, 'latest') | 
					
						
						|  | if os.path.isfile(latest_path): | 
					
						
						|  | with open(latest_path, 'r') as fd: | 
					
						
						|  | tag = fd.read().strip() | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unable to find 'latest' file at {latest_path}") | 
					
						
						|  |  | 
					
						
						|  | ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isdir(ds_checkpoint_dir): | 
					
						
						|  | raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") | 
					
						
						|  |  | 
					
						
						|  | return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): | 
					
						
						|  | """ | 
					
						
						|  | Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be | 
					
						
						|  | loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | 
					
						
						|  | - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) | 
					
						
						|  | - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) | 
					
						
						|  | print(f"Saving fp32 state dict to {output_file}") | 
					
						
						|  | torch.save(state_dict, output_file) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): | 
					
						
						|  | """ | 
					
						
						|  | 1. Put the provided model to cpu | 
					
						
						|  | 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` | 
					
						
						|  | 3. Load it into the provided model | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``model``: the model object to update | 
					
						
						|  | - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | 
					
						
						|  | - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | - ``model`: modified model | 
					
						
						|  |  | 
					
						
						|  | Make sure you have plenty of CPU memory available before you call this function. If you don't | 
					
						
						|  | have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it | 
					
						
						|  | conveniently placed for you in the checkpoint folder. | 
					
						
						|  |  | 
					
						
						|  | A typical usage might be :: | 
					
						
						|  |  | 
					
						
						|  | from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint | 
					
						
						|  | model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) | 
					
						
						|  | # submit to model hub or save the model to share with others | 
					
						
						|  |  | 
					
						
						|  | Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context | 
					
						
						|  | of the same application. i.e. you will need to re-initialize the deepspeed engine, since | 
					
						
						|  | ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | logger.info(f"Extracting fp32 weights") | 
					
						
						|  | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Overwriting model with fp32 weights") | 
					
						
						|  | model = model.cpu() | 
					
						
						|  | model.load_state_dict(state_dict, strict=False) | 
					
						
						|  |  | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "checkpoint_dir", | 
					
						
						|  | type=str, | 
					
						
						|  | help="path to the desired checkpoint folder, e.g., path/checkpoint-12") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "output_file", | 
					
						
						|  | type=str, | 
					
						
						|  | help= | 
					
						
						|  | "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument("-d", "--debug", action='store_true', help="enable debug") | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | debug = args.debug | 
					
						
						|  |  | 
					
						
						|  | convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file) | 
					
						
						|  |  |