File size: 16,501 Bytes
52081de
a3104b3
 
 
 
 
 
 
 
 
52081de
a3104b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---

license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: dungeon-maps-seg-v0.0.1
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dungeon-maps-seg-v0.0.1

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the cephelos/dungeon-maps-seg dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0361
- Mean Iou: 0.9518
- Mean Accuracy: 0.9783
- Overall Accuracy: 0.9893
- Accuracy Unlabeled: nan
- Accuracy Room: 0.9923
- Accuracy Wall: 0.9490
- Accuracy Outside: 0.9935
- Iou Unlabeled: nan
- Iou Room: 0.9857
- Iou Wall: 0.8788
- Iou Outside: 0.9911

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Room | Accuracy Wall | Accuracy Outside | Iou Unlabeled | Iou Room | Iou Wall | Iou Outside |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:----------------:|:-------------:|:--------:|:--------:|:-----------:|
| 0.2922        | 0.7692  | 20   | 0.2745          | 0.8581   | 0.9561        | 0.9598           | nan                | 0.9526        | 0.9466        | 0.9690           | nan           | 0.9466   | 0.6646   | 0.9632      |
| 0.2099        | 1.5385  | 40   | 0.2072          | 0.8639   | 0.9584        | 0.9625           | nan                | 0.9680        | 0.9472        | 0.9599           | nan           | 0.9600   | 0.6732   | 0.9584      |
| 0.2009        | 2.3077  | 60   | 0.1688          | 0.8968   | 0.9623        | 0.9741           | nan                | 0.9718        | 0.9316        | 0.9835           | nan           | 0.9649   | 0.7477   | 0.9778      |
| 0.1258        | 3.0769  | 80   | 0.1482          | 0.8991   | 0.9676        | 0.9745           | nan                | 0.9773        | 0.9492        | 0.9762           | nan           | 0.9708   | 0.7529   | 0.9736      |
| 0.1624        | 3.8462  | 100  | 0.1333          | 0.9115   | 0.9682        | 0.9785           | nan                | 0.9807        | 0.9410        | 0.9829           | nan           | 0.9734   | 0.7817   | 0.9795      |
| 0.1098        | 4.6154  | 120  | 0.1079          | 0.9173   | 0.9624        | 0.9805           | nan                | 0.9859        | 0.9145        | 0.9868           | nan           | 0.9753   | 0.7950   | 0.9817      |
| 0.1629        | 5.3846  | 140  | 0.1041          | 0.9195   | 0.9711        | 0.9806           | nan                | 0.9790        | 0.9462        | 0.9881           | nan           | 0.9738   | 0.8013   | 0.9833      |
| 0.1243        | 6.1538  | 160  | 0.0872          | 0.9243   | 0.9675        | 0.9821           | nan                | 0.9852        | 0.9288        | 0.9884           | nan           | 0.9766   | 0.8125   | 0.9836      |
| 0.0974        | 6.9231  | 180  | 0.0996          | 0.9217   | 0.9731        | 0.9811           | nan                | 0.9754        | 0.9525        | 0.9915           | nan           | 0.9717   | 0.8073   | 0.9861      |
| 0.0861        | 7.6923  | 200  | 0.0798          | 0.9248   | 0.9706        | 0.9821           | nan                | 0.9829        | 0.9403        | 0.9886           | nan           | 0.9764   | 0.8142   | 0.9836      |
| 0.0928        | 8.4615  | 220  | 0.0718          | 0.9276   | 0.9740        | 0.9828           | nan                | 0.9830        | 0.9507        | 0.9882           | nan           | 0.9773   | 0.8209   | 0.9847      |
| 0.0583        | 9.2308  | 240  | 0.0726          | 0.9240   | 0.9686        | 0.9822           | nan                | 0.9870        | 0.9326        | 0.9862           | nan           | 0.9789   | 0.8111   | 0.9821      |
| 0.0886        | 10.0    | 260  | 0.0700          | 0.9296   | 0.9740        | 0.9835           | nan                | 0.9845        | 0.9491        | 0.9885           | nan           | 0.9786   | 0.8250   | 0.9852      |
| 0.1133        | 10.7692 | 280  | 0.0651          | 0.9322   | 0.9633        | 0.9848           | nan                | 0.9912        | 0.9064        | 0.9922           | nan           | 0.9794   | 0.8301   | 0.9872      |
| 0.0821        | 11.5385 | 300  | 0.0616          | 0.9302   | 0.9721        | 0.9836           | nan                | 0.9833        | 0.9417        | 0.9912           | nan           | 0.9779   | 0.8270   | 0.9857      |
| 0.07          | 12.3077 | 320  | 0.0586          | 0.9394   | 0.9690        | 0.9864           | nan                | 0.9896        | 0.9232        | 0.9942           | nan           | 0.9810   | 0.8485   | 0.9887      |
| 0.076         | 13.0769 | 340  | 0.0566          | 0.9349   | 0.9651        | 0.9854           | nan                | 0.9919        | 0.9113        | 0.9920           | nan           | 0.9803   | 0.8365   | 0.9878      |
| 0.0577        | 13.8462 | 360  | 0.0570          | 0.9378   | 0.9755        | 0.9857           | nan                | 0.9850        | 0.9488        | 0.9926           | nan           | 0.9797   | 0.8452   | 0.9886      |
| 0.1261        | 14.6154 | 380  | 0.0548          | 0.9403   | 0.9739        | 0.9864           | nan                | 0.9867        | 0.9410        | 0.9939           | nan           | 0.9808   | 0.8511   | 0.9891      |
| 0.0583        | 15.3846 | 400  | 0.0523          | 0.9428   | 0.9736        | 0.9871           | nan                | 0.9895        | 0.9379        | 0.9934           | nan           | 0.9820   | 0.8566   | 0.9896      |
| 0.0602        | 16.1538 | 420  | 0.0488          | 0.9409   | 0.9737        | 0.9866           | nan                | 0.9899        | 0.9394        | 0.9917           | nan           | 0.9820   | 0.8519   | 0.9887      |
| 0.0728        | 16.9231 | 440  | 0.0504          | 0.9380   | 0.9716        | 0.9860           | nan                | 0.9907        | 0.9335        | 0.9905           | nan           | 0.9819   | 0.8448   | 0.9873      |
| 0.0507        | 17.6923 | 460  | 0.0503          | 0.9378   | 0.9739        | 0.9858           | nan                | 0.9892        | 0.9424        | 0.9901           | nan           | 0.9820   | 0.8445   | 0.9869      |
| 0.077         | 18.4615 | 480  | 0.0474          | 0.9429   | 0.9740        | 0.9871           | nan                | 0.9876        | 0.9396        | 0.9949           | nan           | 0.9819   | 0.8570   | 0.9897      |
| 0.2137        | 19.2308 | 500  | 0.0500          | 0.9413   | 0.9763        | 0.9866           | nan                | 0.9892        | 0.9489        | 0.9907           | nan           | 0.9823   | 0.8532   | 0.9882      |
| 0.0991        | 20.0    | 520  | 0.0459          | 0.9440   | 0.9719        | 0.9875           | nan                | 0.9899        | 0.9309        | 0.9950           | nan           | 0.9827   | 0.8595   | 0.9898      |
| 0.0691        | 20.7692 | 540  | 0.0447          | 0.9451   | 0.9743        | 0.9877           | nan                | 0.9906        | 0.9390        | 0.9933           | nan           | 0.9831   | 0.8623   | 0.9897      |
| 0.0602        | 21.5385 | 560  | 0.0447          | 0.9462   | 0.9754        | 0.9879           | nan                | 0.9885        | 0.9424        | 0.9952           | nan           | 0.9828   | 0.8654   | 0.9904      |
| 0.0469        | 22.3077 | 580  | 0.0429          | 0.9466   | 0.9767        | 0.9879           | nan                | 0.9889        | 0.9471        | 0.9940           | nan           | 0.9830   | 0.8664   | 0.9903      |
| 0.0553        | 23.0769 | 600  | 0.0445          | 0.9468   | 0.9722        | 0.9882           | nan                | 0.9913        | 0.9301        | 0.9952           | nan           | 0.9832   | 0.8666   | 0.9906      |
| 0.0671        | 23.8462 | 620  | 0.0424          | 0.9455   | 0.9748        | 0.9878           | nan                | 0.9900        | 0.9407        | 0.9938           | nan           | 0.9833   | 0.8635   | 0.9898      |
| 0.0431        | 24.6154 | 640  | 0.0417          | 0.9475   | 0.9732        | 0.9883           | nan                | 0.9921        | 0.9331        | 0.9943           | nan           | 0.9836   | 0.8681   | 0.9907      |
| 0.0381        | 25.3846 | 660  | 0.0429          | 0.9449   | 0.9763        | 0.9876           | nan                | 0.9881        | 0.9467        | 0.9942           | nan           | 0.9827   | 0.8620   | 0.9901      |
| 0.0503        | 26.1538 | 680  | 0.0403          | 0.9471   | 0.9746        | 0.9882           | nan                | 0.9924        | 0.9384        | 0.9929           | nan           | 0.9841   | 0.8669   | 0.9902      |
| 0.0685        | 26.9231 | 700  | 0.0410          | 0.9496   | 0.9743        | 0.9888           | nan                | 0.9913        | 0.9361        | 0.9957           | nan           | 0.9842   | 0.8732   | 0.9912      |
| 0.0381        | 27.6923 | 720  | 0.0398          | 0.9494   | 0.9771        | 0.9887           | nan                | 0.9906        | 0.9466        | 0.9942           | nan           | 0.9843   | 0.8729   | 0.9909      |
| 0.0587        | 28.4615 | 740  | 0.0397          | 0.9500   | 0.9760        | 0.9889           | nan                | 0.9913        | 0.9421        | 0.9947           | nan           | 0.9843   | 0.8743   | 0.9913      |
| 0.0573        | 29.2308 | 760  | 0.0402          | 0.9489   | 0.9756        | 0.9887           | nan                | 0.9913        | 0.9411        | 0.9945           | nan           | 0.9845   | 0.8715   | 0.9908      |
| 0.0686        | 30.0    | 780  | 0.0386          | 0.9499   | 0.9763        | 0.9889           | nan                | 0.9914        | 0.9433        | 0.9944           | nan           | 0.9844   | 0.8740   | 0.9912      |
| 0.037         | 30.7692 | 800  | 0.0386          | 0.9503   | 0.9752        | 0.9890           | nan                | 0.9925        | 0.9387        | 0.9944           | nan           | 0.9849   | 0.8748   | 0.9911      |
| 0.0565        | 31.5385 | 820  | 0.0389          | 0.9497   | 0.9773        | 0.9888           | nan                | 0.9898        | 0.9471        | 0.9950           | nan           | 0.9840   | 0.8738   | 0.9913      |
| 0.0405        | 32.3077 | 840  | 0.0383          | 0.9483   | 0.9743        | 0.9886           | nan                | 0.9933        | 0.9366        | 0.9930           | nan           | 0.9848   | 0.8698   | 0.9903      |
| 0.0618        | 33.0769 | 860  | 0.0383          | 0.9497   | 0.9757        | 0.9889           | nan                | 0.9920        | 0.9408        | 0.9942           | nan           | 0.9847   | 0.8734   | 0.9910      |
| 0.0398        | 33.8462 | 880  | 0.0379          | 0.9494   | 0.9766        | 0.9888           | nan                | 0.9917        | 0.9446        | 0.9936           | nan           | 0.9846   | 0.8729   | 0.9908      |
| 0.0488        | 34.6154 | 900  | 0.0376          | 0.9501   | 0.9769        | 0.9889           | nan                | 0.9915        | 0.9450        | 0.9941           | nan           | 0.9851   | 0.8745   | 0.9907      |
| 0.0574        | 35.3846 | 920  | 0.0379          | 0.9512   | 0.9762        | 0.9892           | nan                | 0.9914        | 0.9419        | 0.9953           | nan           | 0.9849   | 0.8773   | 0.9914      |
| 0.0331        | 36.1538 | 940  | 0.0368          | 0.9514   | 0.9764        | 0.9893           | nan                | 0.9921        | 0.9424        | 0.9947           | nan           | 0.9852   | 0.8777   | 0.9913      |
| 0.0578        | 36.9231 | 960  | 0.0368          | 0.9520   | 0.9770        | 0.9894           | nan                | 0.9916        | 0.9443        | 0.9951           | nan           | 0.9852   | 0.8790   | 0.9917      |
| 0.0471        | 37.6923 | 980  | 0.0369          | 0.9517   | 0.9779        | 0.9893           | nan                | 0.9912        | 0.9480        | 0.9947           | nan           | 0.9852   | 0.8786   | 0.9915      |
| 0.0388        | 38.4615 | 1000 | 0.0369          | 0.9511   | 0.9776        | 0.9892           | nan                | 0.9904        | 0.9473        | 0.9952           | nan           | 0.9846   | 0.8770   | 0.9916      |
| 0.0455        | 39.2308 | 1020 | 0.0367          | 0.9517   | 0.9753        | 0.9894           | nan                | 0.9928        | 0.9379        | 0.9950           | nan           | 0.9853   | 0.8784   | 0.9915      |
| 0.0359        | 40.0    | 1040 | 0.0360          | 0.9516   | 0.9773        | 0.9893           | nan                | 0.9917        | 0.9457        | 0.9945           | nan           | 0.9853   | 0.8783   | 0.9913      |
| 0.0281        | 40.7692 | 1060 | 0.0363          | 0.9519   | 0.9775        | 0.9894           | nan                | 0.9917        | 0.9462        | 0.9946           | nan           | 0.9854   | 0.8790   | 0.9913      |
| 0.0394        | 41.5385 | 1080 | 0.0367          | 0.9508   | 0.9769        | 0.9891           | nan                | 0.9922        | 0.9446        | 0.9939           | nan           | 0.9854   | 0.8761   | 0.9909      |
| 0.0286        | 42.3077 | 1100 | 0.0360          | 0.9525   | 0.9761        | 0.9896           | nan                | 0.9924        | 0.9405        | 0.9953           | nan           | 0.9855   | 0.8804   | 0.9917      |
| 0.028         | 43.0769 | 1120 | 0.0363          | 0.9509   | 0.9791        | 0.9891           | nan                | 0.9909        | 0.9530        | 0.9936           | nan           | 0.9850   | 0.8767   | 0.9911      |
| 0.0523        | 43.8462 | 1140 | 0.0366          | 0.9526   | 0.9777        | 0.9895           | nan                | 0.9919        | 0.9466        | 0.9947           | nan           | 0.9856   | 0.8806   | 0.9915      |
| 0.0492        | 44.6154 | 1160 | 0.0364          | 0.9523   | 0.9764        | 0.9895           | nan                | 0.9926        | 0.9419        | 0.9948           | nan           | 0.9856   | 0.8799   | 0.9915      |
| 0.0331        | 45.3846 | 1180 | 0.0356          | 0.9523   | 0.9781        | 0.9894           | nan                | 0.9906        | 0.9484        | 0.9954           | nan           | 0.9852   | 0.8799   | 0.9917      |
| 0.0443        | 46.1538 | 1200 | 0.0358          | 0.9533   | 0.9772        | 0.9897           | nan                | 0.9921        | 0.9443        | 0.9953           | nan           | 0.9857   | 0.8824   | 0.9918      |
| 0.0331        | 46.9231 | 1220 | 0.0356          | 0.9527   | 0.9771        | 0.9896           | nan                | 0.9929        | 0.9441        | 0.9943           | nan           | 0.9858   | 0.8808   | 0.9915      |
| 0.0546        | 47.6923 | 1240 | 0.0357          | 0.9532   | 0.9774        | 0.9897           | nan                | 0.9916        | 0.9450        | 0.9956           | nan           | 0.9856   | 0.8821   | 0.9919      |
| 0.0297        | 48.4615 | 1260 | 0.0351          | 0.9526   | 0.9776        | 0.9896           | nan                | 0.9925        | 0.9461        | 0.9942           | nan           | 0.9857   | 0.8807   | 0.9915      |
| 0.053         | 49.2308 | 1280 | 0.0349          | 0.9527   | 0.9779        | 0.9896           | nan                | 0.9921        | 0.9471        | 0.9945           | nan           | 0.9856   | 0.8809   | 0.9916      |
| 0.0474        | 50.0    | 1300 | 0.0361          | 0.9518   | 0.9783        | 0.9893           | nan                | 0.9923        | 0.9490        | 0.9935           | nan           | 0.9857   | 0.8788   | 0.9911      |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.0+cpu
- Datasets 2.19.1
- Tokenizers 0.19.1