cesarali commited on
Commit
e78eb7e
·
verified ·
1 Parent(s): d3f0c5d

best val_rmse 0.0001

Browse files
Files changed (2) hide show
  1. config.json +207 -0
  2. pytorch_model.bin +3 -0
config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_val_loss": 0.00011974902736255899,
3
+ "comet_ai_key": null,
4
+ "context_observations": {
5
+ "add_rem": true,
6
+ "divide_in_past_and_future": true,
7
+ "empirical_number_of_obs": false,
8
+ "max_num_obs": 15,
9
+ "min_num_of_past_context": 3,
10
+ "num_of_past_context": 5,
11
+ "obs_dataset": "/home/cesarali/Pharma/generative_pk/data/preprocessed/lenuzza/Lenuzza2016.csv",
12
+ "obs_type": "observations_pk_peak_halflife",
13
+ "past_time_ratio": 0.1
14
+ },
15
+ "dosing": {
16
+ "dose": 1.0,
17
+ "route": "oral",
18
+ "time": 0.0
19
+ },
20
+ "experiment_dir": null,
21
+ "experiment_indentifier": null,
22
+ "experiment_name": "node_pk_compartments",
23
+ "hf_model_card_path": [
24
+ "hf_model_cards",
25
+ "NODE-PK_Readme.md"
26
+ ],
27
+ "hf_model_name": "LatentNodePK_development",
28
+ "hugging_face_token": null,
29
+ "kl_weight": 0.001,
30
+ "meta_study": {
31
+ "V_tmag_range": [
32
+ 0.01,
33
+ 0.1
34
+ ],
35
+ "drug_id_options": [
36
+ "Drug_A",
37
+ "Drug_B",
38
+ "Drug_C"
39
+ ],
40
+ "k_1p_tmag_range": [
41
+ 0.01,
42
+ 0.1
43
+ ],
44
+ "k_a_tmag_range": [
45
+ 0.01,
46
+ 0.1
47
+ ],
48
+ "k_e_tmag_range": [
49
+ 0.01,
50
+ 0.1
51
+ ],
52
+ "k_p1_tmag_range": [
53
+ 0.01,
54
+ 0.1
55
+ ],
56
+ "log_V_mean_range": [
57
+ -1.5,
58
+ 1.5
59
+ ],
60
+ "log_V_std_range": [
61
+ 0.1,
62
+ 0.5
63
+ ],
64
+ "log_k_1p_mean_range": [
65
+ -1.5,
66
+ 1.5
67
+ ],
68
+ "log_k_1p_std_range": [
69
+ 0.1,
70
+ 0.5
71
+ ],
72
+ "log_k_a_mean_range": [
73
+ -1.5,
74
+ 1.5
75
+ ],
76
+ "log_k_a_std_range": [
77
+ 0.1,
78
+ 0.5
79
+ ],
80
+ "log_k_e_mean_range": [
81
+ -1.5,
82
+ 1.5
83
+ ],
84
+ "log_k_e_std_range": [
85
+ 0.1,
86
+ 0.5
87
+ ],
88
+ "log_k_p1_mean_range": [
89
+ -1.5,
90
+ 1.5
91
+ ],
92
+ "log_k_p1_std_range": [
93
+ 0.1,
94
+ 0.5
95
+ ],
96
+ "num_individuals_range": [
97
+ 10,
98
+ 10
99
+ ],
100
+ "num_peripherals_range": [
101
+ 1,
102
+ 3
103
+ ],
104
+ "solver_method": "rk4",
105
+ "time_num_steps": 100,
106
+ "time_start": 0.0,
107
+ "time_stop": 10.0
108
+ },
109
+ "mix_data": {
110
+ "evaluate_prediction_steps_past": 3,
111
+ "log_transform": false,
112
+ "n_of_databatches": 1,
113
+ "n_of_target_individuals": 0,
114
+ "normalize_by_max": true,
115
+ "normalize_time": true,
116
+ "pretraining_dataset_path": [
117
+ "preprocessed",
118
+ "lenuzza",
119
+ "Lenuzza2016.csv"
120
+ ],
121
+ "pretraining_epochs": 90,
122
+ "pretraining_protocol": "none",
123
+ "split_seed": 42,
124
+ "split_strategy": "subject",
125
+ "test_protocol": "empirical",
126
+ "test_size": 5,
127
+ "train_size": 100,
128
+ "val_protocol": "empirical",
129
+ "val_size": 5,
130
+ "z_score_normalization": false
131
+ },
132
+ "model_type": "node_pk",
133
+ "my_results_path": null,
134
+ "name_str": "LatentNodePK",
135
+ "network": {
136
+ "activation": "ReLU",
137
+ "aggregator_num_heads": 8,
138
+ "aggregator_type": "attention",
139
+ "decoder_hidden_dim": 32,
140
+ "decoder_name": "RNNDecoder",
141
+ "decoder_num_layers": 2,
142
+ "decoder_rnn_hidden_dim": 20,
143
+ "drift_activation": "Tanh",
144
+ "drift_num_layers": 2,
145
+ "dropout": 0.1,
146
+ "encoder_rnn_hidden_dim": 20,
147
+ "exclusive_node_step": true,
148
+ "individual_encoder_name": "RNNContextEncoder",
149
+ "individual_encoder_number_of_heads": 4,
150
+ "init_hidden_num_layers": 2,
151
+ "input_encoding_hidden_dim": 128,
152
+ "loss_name": "nll",
153
+ "node_step": true,
154
+ "norm": "layer",
155
+ "output_head_num_layers": 2,
156
+ "rnn_decoder_number_of_layers": 1,
157
+ "rnn_individual_encoder_number_of_layers": 1,
158
+ "time_obs_encoder_hidden_dim": 32,
159
+ "time_obs_encoder_output_dim": 32,
160
+ "use_attention": true,
161
+ "zi_latent_dim": 20
162
+ },
163
+ "run_index": 0,
164
+ "tags": [
165
+ "node-pk",
166
+ "B-0"
167
+ ],
168
+ "target_observations": {
169
+ "add_rem": true,
170
+ "divide_in_past_and_future": true,
171
+ "empirical_number_of_obs": true,
172
+ "max_num_obs": 14,
173
+ "min_num_of_past_context": 3,
174
+ "num_of_past_context": 4,
175
+ "obs_dataset": "/home/cesarali/Pharma/generative_pk/data/preprocessed/lenuzza/Lenuzza2016.csv",
176
+ "obs_type": "observations_pk_peak_halflife",
177
+ "past_time_ratio": 0.1
178
+ },
179
+ "train": {
180
+ "amsgrad": false,
181
+ "batch_size": 8,
182
+ "betas": [
183
+ 0.9,
184
+ 0.999
185
+ ],
186
+ "epochs": 5,
187
+ "eps": 1e-08,
188
+ "gradient_clip_val": 1.0,
189
+ "learning_rate": 0.0001,
190
+ "log_image_every_epoch": 2,
191
+ "log_interval": 1,
192
+ "log_vcp": true,
193
+ "num_batch_plot": 1,
194
+ "num_workers": 3,
195
+ "optimizer_name": "AdamW",
196
+ "scheduler_name": "CosineAnnealingLR",
197
+ "scheduler_params": {
198
+ "T_max": 1000,
199
+ "eta_min": 5e-05,
200
+ "last_epoch": -1
201
+ },
202
+ "weight_decay": 0.0001
203
+ },
204
+ "transformers_version": "4.52.4",
205
+ "upload_to_hf_hub": true,
206
+ "verbose": false
207
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:337d50e8fd6c9d1d3ff8b1c1987dbdd4958ca8b92b8f69413246ed5ec8393ad8
3
+ size 118441