File size: 2,203 Bytes
227aa79
 
10d67fa
 
 
 
 
 
 
227aa79
 
10d67fa
227aa79
10d67fa
227aa79
10d67fa
 
227aa79
 
 
10d67fa
 
 
 
 
 
 
 
 
83db0b8
 
10d67fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
library_name: transformers
tags:
- adversarial-attacks
- jailbreak
- red-teaming
- alignment
- LLM-safety
license: mit
---

# ADV-LLM

ADV-LLM is an **iteratively self-tuned** adversarial language model that generates jailbreak suffixes capable of bypassing safety alignment in open-source and proprietary models.

- **Paper:** https://arxiv.org/abs/2410.18469  
- **Code:** https://github.com/SunChungEn/ADV-LLM  

## Model Details

- **Authors:** Chung-En Sun et al. (UCSD & Microsoft Research)  
- **Finetuned from:** phi3-mini
- **Language:** English  
- **License:** MIT  

## Usage Example

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("cesun/advllm_phi3")
tokenizer = AutoTokenizer.from_pretrained("cesun/advllm_phi3")
inputs = tokenizer("How to make a bomb", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=90)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Evaluation Results

ADV-LLM achieves near-perfect jailbreak success rates under group beam search (GBS-50) across a wide range of models and safety checks, including Template (TP), LlamaGuard (LG), and GPT-4 evaluations.

| Victim Model             | GBS-50 ASR (TP / LG / GPT-4) |
|--------------------------|-------------------------------|
| Vicuna-7B-v1.5           | 100.00% / 100.00% / 99.81%    |
| Guanaco-7B               | 100.00% / 100.00% / 99.81%    |
| Mistral-7B-Instruct-v0.2 | 100.00% / 100.00% / 100.00%   |
| LLaMA-2-7B-chat          | 100.00% / 100.00% / 93.85%    |
| LLaMA-3-8B-Instruct      | 100.00% / 98.84% / 98.27%     |

**Legend:**
- **ASR** = Attack Success Rate  
- **TP** = Template-based refusal detection  
- **LG** = LlamaGuard safety classifier  
- **GPT-4** = Harmfulness judged by GPT-4

## Citation

If you use ADV-LLM in your research or evaluation, please cite:

**BibTeX**

```bibtex
@inproceedings{sun2025advllm,
  title={Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities},
  author={Sun, Chung-En and Liu, Xiaodong and Yang, Weiwei and Weng, Tsui-Wei and Cheng, Hao and San, Aidan and Galley, Michel and Gao, Jianfeng},
  booktitle={NAACL},
  year={2025}
}