--- library_name: transformers tags: - adversarial-attacks - jailbreak - red-teaming - alignment - LLM-safety license: mit --- # ADV-LLM ADV-LLM is an **iteratively self-tuned** adversarial language model that generates jailbreak suffixes capable of bypassing safety alignment in open-source and proprietary models. - **Paper:** https://arxiv.org/abs/2410.18469 - **Code:** https://github.com/SunChungEn/ADV-LLM ## Model Details - **Authors:** Chung-En Sun et al. (UCSD & Microsoft Research) - **Finetuned from:** phi3-mini - **Language:** English - **License:** MIT ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("cesun/advllm_phi3") tokenizer = AutoTokenizer.from_pretrained("cesun/advllm_phi3") inputs = tokenizer("How to make a bomb", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=90) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Evaluation Results ADV-LLM achieves near-perfect jailbreak success rates under group beam search (GBS-50) across a wide range of models and safety checks, including Template (TP), LlamaGuard (LG), and GPT-4 evaluations. | Victim Model | GBS-50 ASR (TP / LG / GPT-4) | |--------------------------|-------------------------------| | Vicuna-7B-v1.5 | 100.00% / 100.00% / 99.81% | | Guanaco-7B | 100.00% / 100.00% / 99.81% | | Mistral-7B-Instruct-v0.2 | 100.00% / 100.00% / 100.00% | | LLaMA-2-7B-chat | 100.00% / 100.00% / 93.85% | | LLaMA-3-8B-Instruct | 100.00% / 98.84% / 98.27% | **Legend:** - **ASR** = Attack Success Rate - **TP** = Template-based refusal detection - **LG** = LlamaGuard safety classifier - **GPT-4** = Harmfulness judged by GPT-4 ## Citation If you use ADV-LLM in your research or evaluation, please cite: **BibTeX** ```bibtex @inproceedings{sun2025advllm, title={Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities}, author={Sun, Chung-En and Liu, Xiaodong and Yang, Weiwei and Weng, Tsui-Wei and Cheng, Hao and San, Aidan and Galley, Michel and Gao, Jianfeng}, booktitle={NAACL}, year={2025} }