File size: 2,907 Bytes
c46db71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-3

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1124
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 3.7797        | 0.34  | 200  | 3.0703          | 1.0 |
| 2.8701        | 0.69  | 400  | 3.3128          | 1.0 |
| 2.8695        | 1.03  | 600  | 3.1333          | 1.0 |
| 2.8634        | 1.38  | 800  | 3.1634          | 1.0 |
| 2.8629        | 1.72  | 1000 | 3.0432          | 1.0 |
| 2.8652        | 2.07  | 1200 | 3.0300          | 1.0 |
| 2.8602        | 2.41  | 1400 | 3.1894          | 1.0 |
| 2.8622        | 2.75  | 1600 | 3.1950          | 1.0 |
| 2.8606        | 3.1   | 1800 | 3.0656          | 1.0 |
| 2.8605        | 3.44  | 2000 | 3.0614          | 1.0 |
| 2.8595        | 3.79  | 2200 | 3.0697          | 1.0 |
| 2.8504        | 4.13  | 2400 | 3.1404          | 1.0 |
| 2.8553        | 4.48  | 2600 | 3.0682          | 1.0 |
| 2.8585        | 4.82  | 2800 | 3.1393          | 1.0 |
| 2.8567        | 5.16  | 3000 | 3.1013          | 1.0 |
| 2.8539        | 5.51  | 3200 | 3.0740          | 1.0 |
| 2.8588        | 5.85  | 3400 | 3.0616          | 1.0 |
| 2.8509        | 6.2   | 3600 | 3.1032          | 1.0 |
| 2.8589        | 6.54  | 3800 | 3.1348          | 1.0 |
| 2.8505        | 6.88  | 4000 | 3.1514          | 1.0 |
| 2.8548        | 7.23  | 4200 | 3.1319          | 1.0 |
| 2.8466        | 7.57  | 4400 | 3.1412          | 1.0 |
| 2.8549        | 7.92  | 4600 | 3.1235          | 1.0 |
| 2.8532        | 8.26  | 4800 | 3.0751          | 1.0 |
| 2.8548        | 8.61  | 5000 | 3.0946          | 1.0 |
| 2.8513        | 8.95  | 5200 | 3.0840          | 1.0 |
| 2.845         | 9.29  | 5400 | 3.0896          | 1.0 |
| 2.8592        | 9.64  | 5600 | 3.1055          | 1.0 |
| 2.8453        | 9.98  | 5800 | 3.1124          | 1.0 |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1