File size: 5,956 Bytes
f235b7d ffa29b0 d684761 ffa29b0 7b97465 f235b7d ffa29b0 f235b7d a34474e f235b7d 0355aa3 a34474e 0355aa3 a34474e 0355aa3 a34474e 327b583 a34474e 0355aa3 bfa4134 a34474e dcc6b91 6185e3f dcc6b91 bfa4134 0355aa3 327b583 132d375 a34474e 327b583 132d375 424f11f a34474e 424f11f 132d375 bfa4134 327b583 132d375 a816954 f235b7d ffa29b0 f235b7d ffa29b0 f235b7d ffa29b0 7758e25 ffa29b0 f235b7d ffa29b0 f235b7d 8941911 327b583 424f11f 327b583 8941911 327b583 8941911 327b583 8941911 d1484b0 327b583 d1484b0 8941911 327b583 8941911 327b583 8941911 ffa29b0 8941911 f235b7d ffa29b0 8941911 ffa29b0 8941911 ffa29b0 f235b7d ffa29b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
license: apache-2.0
language:
- sl
- hr
- sr
- cs
- pl
base_model:
- facebook/w2v-bert-2.0
pipeline_tag: audio-classification
metrics:
- f1
- recall
- precision
---
# Frame classification for filled pauses
This model classifies individual 20ms frames of audio based on
presence of filled pauses ("eee", "errm", ...).
# Training data
The model was trained on human-annotated Slovenian speech corpus
[ROG-Artur](http://hdl.handle.net/11356/1992). Recordings from the train split were segmented into
at most 30s long chunks.
# Evaluation
Although the output of the model is a series 0 or 1, describing their 20ms frames,
the evaluation was done on event level; spans of consecutive outputs 1 were
bundled together into one event. When the true and predicted
events partially overlap, this is counted as a true positive.
We report precisions, recalls, and F1-scores of the positive class.
## Evaluation on ROG corpus
| postprocessing | recall | precision | F1 |
|------:|---------:|------------:|------:|
|none| 0.981 | 0.955 | 0.968 |
## Evaluation on ParlaSpeech corpora
For every language in the
[ParlaSpeech collection](https://huggingface.co/collections/classla/parlaspeech-670923f23ab185f413d40795),
400 instances were sampled and annotated by human annotators.
Since ParlaSpeech corpora are too big to be manually segmented as ROG is,
we observed a few failure modes when inferring. It was discovered
that post-processing can be used to improve results. False positives
were observed to be caused by improper audio segmentation, which is
why disabling predictions that start at the start of the audio or
end at the end of the audio can be beneficial. Another failure mode
is predicting very short events, which is why ignoring very short predictions
can be safely discarded.
With added postprocessing, the model achieves the following metrics:
| lang | postprocessing | recall | precision | F1 |
|:-------|:-----------------------|---------:|------------:|------:|
| CZ | drop_short_initial_and_final | 0.889 | 0.859 | 0.874 |
| HR | drop_short_initial_and_final | 0.94 | 0.887 | 0.913 |
| PL | drop_short_initial_and_final | 0.903 | 0.947 | 0.924 |
| RS | drop_short_initial_and_final | 0.966 | 0.915 | 0.94 |
Fop details on postprocessing see function `frames_to_intervals` in the code snippet below.
# Example use:
```python
from transformers import AutoFeatureExtractor, Wav2Vec2BertForAudioFrameClassification
from datasets import Dataset, Audio
import torch
import numpy as np
from pathlib import Path
device = torch.device("cuda")
model_name = "classla/wav2vecbert2-filledPause"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = Wav2Vec2BertForAudioFrameClassification.from_pretrained(model_name).to(device)
ds = Dataset.from_dict(
{
"audio": [
"/cache/peterr/mezzanine_resources/filled_pauses/data/dev/Iriss-J-Gvecg-P500001-avd_2082.293_2112.194.wav"
],
}
).cast_column("audio", Audio(sampling_rate=16_000, mono=True))
def frames_to_intervals(
frames: list[int],
drop_short=True,
drop_initial=True,
drop_final=True,
short_cutoff_s=0.08,
) -> list[tuple[float]]:
"""Transforms a list of ones or zeros, corresponding to annotations on frame
levels, to a list of intervals ([start second, end second]).
Allows for additional filtering on duration (false positives are often
short) and start times (false positives starting at 0.0 are often an
artifact of poor segmentation).
:param list[int] frames: Input frame labels
:param bool drop_short: Drop everything shorter than short_cutoff_s,
defaults to True
:param bool drop_initial: Drop predictions starting at 0.0, defaults to True
:param bool drop_final: Drop predictions ending at audio end, defaults to True
:param float short_cutoff_s: Duration in seconds of shortest allowable
prediction, defaults to 0.08
:return list[tuple[float]]: List of intervals [start_s, end_s]
"""
from itertools import pairwise
import pandas as pd
results = []
ndf = pd.DataFrame(
data={
"time_s": [0.020 * i for i in range(len(frames))],
"frames": frames,
}
)
ndf = ndf.dropna()
indices_of_change = ndf.frames.diff()[ndf.frames.diff() != 0].index.values
for si, ei in pairwise(indices_of_change):
if ndf.loc[si : ei - 1, "frames"].mode()[0] == 0:
pass
else:
results.append(
(
round(ndf.loc[si, "time_s"], 3),
round(ndf.loc[ei, "time_s"], 3),
)
)
if drop_short and (len(results) > 0):
results = [i for i in results if (i[1] - i[0] >= short_cutoff_s)]
if drop_initial and (len(results) > 0):
results = [i for i in results if i[0] != 0.0]
if drop_final and (len(results) > 0):
results = [i for i in results if i[1] != 0.02 * len(frames)]
return results
def evaluator(chunks):
sampling_rate = chunks["audio"][0]["sampling_rate"]
with torch.no_grad():
inputs = feature_extractor(
[i["array"] for i in chunks["audio"]],
return_tensors="pt",
sampling_rate=sampling_rate,
).to(device)
logits = model(**inputs).logits
y_pred = np.array(logits.cpu()).argmax(axis=-1)
intervals = [frames_to_intervals(i) for i in y_pred]
return {"y_pred": y_pred.tolist(), "intervals": intervals}
ds = ds.map(evaluator, batched=True)
print(ds["y_pred"][0])
# Prints a list of 20ms frames: [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0....]
# with 0 indicating no filled pause detected in that frame
print(ds["intervals"][0])
# Prints the identified intervals as a list of [start_s, ends_s]:
# [[0.08, 0.28 ], ...]
```
# Citation
Coming soon. |