File size: 2,917 Bytes
7f14981 ceac8ea a45500f 978ea98 f873409 9be7a51 09bb8c8 89f0d99 5969326 5402d89 5969326 b97b0d7 566554b b97b0d7 32d0d2e b97b0d7 32d0d2e 28ab275 6883b4b 35c8c6d 6883b4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: mit
language:
- en
base_model:
- unsloth/phi-4
- microsoft/phi-4
pipeline_tag: text-generation
---
# Phi-4 converted for ExLlamaV2
[ExLlamaV2 is an inference library for running local LLMs on modern consumer GPUs.](https://github.com/turboderp-org/exllamav2)
| | Quant type | File Size | Vram*|
| -------- | ---------- | --------- | -------- |
| [phi-4 hb8 3bpw](https://huggingface.co/cmh/phi-4_exl2/tree/hb8_3bpw) | 3 bits per weight | 6.66 GB | **10,3 GB** |
| [phi-4 hb8 4bpw](https://huggingface.co/cmh/phi-4_exl2/tree/hb8_4bpw) | 4 bits per weight | 8.36 GB | **11,9 GB** |
| [phi-4 hb8 5bpw](https://huggingface.co/cmh/phi-4_exl2/tree/hb8_5bpw) | 5 bits per weight | 10.1 GB | **13,5 GB** |
| [phi-4 hb8 6bpw](https://huggingface.co/cmh/phi-4_exl2/tree/hb8_6bpw) | 6 bits per weight | 11.8 GB | **15,1 GB** |
| [phi-4 hb8 7bpw](https://huggingface.co/cmh/phi-4_exl2/tree/hb8_7bpw) | 7 bits per weight | 13.5 GB | **16,7 GB** |
| [phi-4 hb8 8bpw](https://huggingface.co/cmh/phi-4_exl2/tree/hb8_8bpw) | 8 bits per weight | 15.2 GB | **18,2 GB** |
<sub>*approximate value at **16k context, FP16 cache**.<sup>
---------------------------------------------
# Phi-4 Model Card
[Phi-4 Technical Report](https://arxiv.org/pdf/2412.08905)
## Model Summary
| | |
|-------------------------|-------------------------------------------------------------------------------|
| **Developers** | Microsoft Research |
| **Description** | `phi-4` is a state-of-the-art open model built upon a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach was to ensure that small capable models were trained with data focused on high quality and advanced reasoning.<br><br>`phi-4` underwent a rigorous enhancement and alignment process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures |
| **Architecture** | 14B parameters, dense decoder-only Transformer model |
| **Context length** | 16384 tokens |
## Usage
### Input Formats
Given the nature of the training data, `phi-4` is best suited for prompts using the chat format as follows:
```bash
<|im_start|>system<|im_sep|>
You are a medieval knight and must provide explanations to modern people.<|im_end|>
<|im_start|>user<|im_sep|>
How should I explain the Internet?<|im_end|>
<|im_start|>assistant<|im_sep|>
```
### With ExUI:
Add Phi-4 prompt format:
Edit/replace exui/backend/prompts.py with https://huggingface.co/cmh/phi-4_exl2/raw/main/backend/prompts.py
|