Training update: 6,893/238,453 rows (2.89%) | +501 new @ 2025-10-23 03:09:37
Browse files- README.md +7 -7
- model.safetensors +1 -1
- training_args.bin +1 -1
- training_metadata.json +6 -6
README.md
CHANGED
|
@@ -24,7 +24,7 @@ pipeline_tag: fill-mask
|
|
| 24 |
- Model type: fine-tuned lightweight BERT variant
|
| 25 |
- Languages: English & Indonesia
|
| 26 |
- Finetuned from: `boltuix/bert-micro`
|
| 27 |
-
- Status: **Early version** — trained on **2.
|
| 28 |
**Model sources**
|
| 29 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 30 |
- Data: Cybersecurity Data
|
|
@@ -40,7 +40,7 @@ You can use this model to classify cybersecurity-related text — for example, w
|
|
| 40 |
- Not optimized for languages other than English and Indonesian.
|
| 41 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
-
Because the model is based on a small subset (2.
|
| 44 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 45 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 46 |
## 4. How to Get Started with the Model
|
|
@@ -75,11 +75,11 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
|
|
| 75 |
|
| 76 |
### Training Data
|
| 77 |
- **Total database rows**: 238,453
|
| 78 |
-
- **Rows processed (cumulative)**: 6,
|
| 79 |
-
- **Rows in this session**:
|
| 80 |
-
- **Training samples (after chunking)**:
|
| 81 |
-
- **Training date**: 2025-10-23 03:
|
| 82 |
|
| 83 |
### Post-Training Metrics
|
| 84 |
-
- **Final training loss**:
|
| 85 |
- **Rows→Samples ratio**: 1.00x (average chunks per row)
|
|
|
|
| 24 |
- Model type: fine-tuned lightweight BERT variant
|
| 25 |
- Languages: English & Indonesia
|
| 26 |
- Finetuned from: `boltuix/bert-micro`
|
| 27 |
+
- Status: **Early version** — trained on **2.89%** of planned data.
|
| 28 |
**Model sources**
|
| 29 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 30 |
- Data: Cybersecurity Data
|
|
|
|
| 40 |
- Not optimized for languages other than English and Indonesian.
|
| 41 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
+
Because the model is based on a small subset (2.89%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
|
| 44 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 45 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 46 |
## 4. How to Get Started with the Model
|
|
|
|
| 75 |
|
| 76 |
### Training Data
|
| 77 |
- **Total database rows**: 238,453
|
| 78 |
+
- **Rows processed (cumulative)**: 6,893 (2.89%)
|
| 79 |
+
- **Rows in this session**: 501
|
| 80 |
+
- **Training samples (after chunking)**: 501
|
| 81 |
+
- **Training date**: 2025-10-23 03:09:37
|
| 82 |
|
| 83 |
### Post-Training Metrics
|
| 84 |
+
- **Final training loss**:
|
| 85 |
- **Rows→Samples ratio**: 1.00x (average chunks per row)
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 17671560
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e2e7529b5d461e6e4fab43e90df77f11c204ca761044372d623b3b0399d2206e
|
| 3 |
size 17671560
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 5905
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c4c01b98595a6b75c1defe26eb86f4938dde769ad3f6e9d3e9be5711880ffb56
|
| 3 |
size 5905
|
training_metadata.json
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
{
|
| 2 |
-
"trained_at":
|
| 3 |
-
"trained_at_readable": "2025-10-23 03:
|
| 4 |
-
"samples_this_session":
|
| 5 |
-
"new_rows_this_session":
|
| 6 |
-
"trained_rows_total":
|
| 7 |
"total_db_rows": 238453,
|
| 8 |
-
"percentage": 2.
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|
|
|
|
| 1 |
{
|
| 2 |
+
"trained_at": 1761188977.395925,
|
| 3 |
+
"trained_at_readable": "2025-10-23 03:09:37",
|
| 4 |
+
"samples_this_session": 501,
|
| 5 |
+
"new_rows_this_session": 501,
|
| 6 |
+
"trained_rows_total": 6893,
|
| 7 |
"total_db_rows": 238453,
|
| 8 |
+
"percentage": 2.890716409523051,
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|