Training update: 1,598/237,655 rows (0.67%) | +1 new @ 2025-10-20 09:29:54
Browse files- README.md +8 -9
- model.safetensors +1 -1
- training_args.bin +2 -2
- training_metadata.json +7 -7
README.md
CHANGED
|
@@ -3,29 +3,31 @@ language:
|
|
| 3 |
- en
|
| 4 |
- id
|
| 5 |
tags:
|
|
|
|
| 6 |
- text-classification
|
|
|
|
| 7 |
- cybersecurity
|
|
|
|
|
|
|
| 8 |
base_model: boltuix/bert-micro
|
|
|
|
| 9 |
---
|
| 10 |
-
|
| 11 |
# bert-micro-cybersecurity
|
| 12 |
|
| 13 |
## 1. Model Details
|
| 14 |
-
|
| 15 |
**Model description**
|
| 16 |
"bert-micro-cybersecurity" is a compact transformer model adapted for cybersecurity text classification tasks (e.g., threat detection, incident reports, malicious vs benign content).
|
| 17 |
|
| 18 |
- Model type: fine-tuned lightweight BERT variant
|
| 19 |
- Languages: English & Indonesia
|
| 20 |
- Finetuned from: `boltuix/bert-micro`
|
| 21 |
-
- Status: **Early version** — trained on **0.
|
| 22 |
|
| 23 |
**Model sources**
|
| 24 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 25 |
- Data: Cybersecurity Data
|
| 26 |
|
| 27 |
## 2. Uses
|
| 28 |
-
|
| 29 |
### Direct use
|
| 30 |
You can use this model to classify cybersecurity-related text — for example, whether a given message, report or log entry indicates malicious intent, abnormal behaviour, or threat presence.
|
| 31 |
|
|
@@ -40,14 +42,12 @@ You can use this model to classify cybersecurity-related text — for example, w
|
|
| 40 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 41 |
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
-
|
| 44 |
-
Because the model is based on a small subset (0.59%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
|
| 45 |
|
| 46 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 47 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 48 |
|
| 49 |
## 4. How to Get Started with the Model
|
| 50 |
-
|
| 51 |
```python
|
| 52 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 53 |
|
|
@@ -62,8 +62,7 @@ predicted_class = logits.argmax(dim=-1).item()
|
|
| 62 |
```
|
| 63 |
|
| 64 |
## 5. Training Details
|
| 65 |
-
|
| 66 |
-
- **Trained records**: 1,398 / 237,619 (0.59%)
|
| 67 |
- **Learning rate**: 5e-05
|
| 68 |
- **Epochs**: 3
|
| 69 |
- **Batch size**: 1
|
|
|
|
| 3 |
- en
|
| 4 |
- id
|
| 5 |
tags:
|
| 6 |
+
- bert
|
| 7 |
- text-classification
|
| 8 |
+
- token-classification
|
| 9 |
- cybersecurity
|
| 10 |
+
- fill-mask
|
| 11 |
+
- named-entity-recognition
|
| 12 |
base_model: boltuix/bert-micro
|
| 13 |
+
library_name: transformers
|
| 14 |
---
|
|
|
|
| 15 |
# bert-micro-cybersecurity
|
| 16 |
|
| 17 |
## 1. Model Details
|
|
|
|
| 18 |
**Model description**
|
| 19 |
"bert-micro-cybersecurity" is a compact transformer model adapted for cybersecurity text classification tasks (e.g., threat detection, incident reports, malicious vs benign content).
|
| 20 |
|
| 21 |
- Model type: fine-tuned lightweight BERT variant
|
| 22 |
- Languages: English & Indonesia
|
| 23 |
- Finetuned from: `boltuix/bert-micro`
|
| 24 |
+
- Status: **Early version** — trained on **0.67%** of planned data.
|
| 25 |
|
| 26 |
**Model sources**
|
| 27 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 28 |
- Data: Cybersecurity Data
|
| 29 |
|
| 30 |
## 2. Uses
|
|
|
|
| 31 |
### Direct use
|
| 32 |
You can use this model to classify cybersecurity-related text — for example, whether a given message, report or log entry indicates malicious intent, abnormal behaviour, or threat presence.
|
| 33 |
|
|
|
|
| 42 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 43 |
|
| 44 |
## 3. Bias, Risks, and Limitations
|
| 45 |
+
Because the model is based on a small subset (0.67%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
|
|
|
|
| 46 |
|
| 47 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 48 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 49 |
|
| 50 |
## 4. How to Get Started with the Model
|
|
|
|
| 51 |
```python
|
| 52 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 53 |
|
|
|
|
| 62 |
```
|
| 63 |
|
| 64 |
## 5. Training Details
|
| 65 |
+
- **Trained records**: 1,598 / 237,655 (0.67%)
|
|
|
|
| 66 |
- **Learning rate**: 5e-05
|
| 67 |
- **Epochs**: 3
|
| 68 |
- **Batch size**: 1
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 17671560
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c8256fb20d6b61fe0310f53219033d25608c25418739f63cc54efbe6e6a2f833
|
| 3 |
size 17671560
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:944823f3e9b0060cf3527486bbe82b1c34c2c3c5b3e9cefe53fa6360de9c5a72
|
| 3 |
+
size 5905
|
training_metadata.json
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
{
|
| 2 |
-
"trained_at":
|
| 3 |
-
"trained_at_readable": "2025-10-20
|
| 4 |
-
"samples_this_session":
|
| 5 |
-
"new_rows_this_session":
|
| 6 |
-
"trained_rows_total":
|
| 7 |
-
"total_db_rows":
|
| 8 |
-
"percentage": 0.
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05
|
|
|
|
| 1 |
{
|
| 2 |
+
"trained_at": 1760952594.7217977,
|
| 3 |
+
"trained_at_readable": "2025-10-20 09:29:54",
|
| 4 |
+
"samples_this_session": 1,
|
| 5 |
+
"new_rows_this_session": 1,
|
| 6 |
+
"trained_rows_total": 1598,
|
| 7 |
+
"total_db_rows": 237655,
|
| 8 |
+
"percentage": 0.6724032736529844,
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05
|