codersan commited on
Commit
700809d
·
verified ·
1 Parent(s): d87027e

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,775 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:131157
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: intfloat/multilingual-e5-small
10
+ widget:
11
+ - source_sentence: عواقب ممنوعیت یادداشت های 500 روپیه و 1000 روپیه در مورد اقتصاد
12
+ هند چیست؟
13
+ sentences:
14
+ - آیا باید در فیزیک و علوم کامپیوتر دو برابر کنم؟
15
+ - چگونه اقتصاد هند پس از ممنوعیت 500 1000 یادداشت تحت تأثیر قرار گرفت؟
16
+ - آیا آلمان در اجازه پناهندگان سوری به کشور خود اشتباه کرد؟
17
+ - source_sentence: بهترین شماره پشتیبانی فنی QuickBooks در نیویورک ، ایالات متحده
18
+ کدام است؟
19
+ sentences:
20
+ - فناوری هایی که اکثر مردم از آنها نمی دانند چیست؟
21
+ - بهترین شماره پشتیبانی QuickBooks در آرکانزاس چیست؟
22
+ - چرا در مقایسه با طرف نزدیک ، دهانه های زیادی در قسمت دور ماه وجود دارد؟
23
+ - source_sentence: اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA
24
+ در میشیگان چیست؟
25
+ sentences:
26
+ - پیروزی ترامپ چگونه بر کانادا تأثیر خواهد گذاشت؟
27
+ - اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA در آیداهو چیست؟
28
+ - مزایای خرید بیمه عمر چیست؟
29
+ - source_sentence: چرا این همه افراد ناراضی هستند؟
30
+ sentences:
31
+ - چرا آب نبات تافی آب شور در مغولستان وارد می شود؟
32
+ - برای یک رابطه موفق از راه دور چه چیزی طول می کشد؟
33
+ - چرا مردم ناراضی هستند؟
34
+ - source_sentence: برای تبدیل شدن به نویسنده برتر Quora ، چند بازدید و پاسخ لازم است؟
35
+ sentences:
36
+ - چگونه می توانم نویسنده برتر Quora شوم ، از صعود بیشتر و آمار بهتر استفاده کنم؟
37
+ - چرا بسیاری از افرادی که سؤالاتی را در Quora ارسال می کنند ، ابتدا Google را بررسی
38
+ می کنند؟
39
+ - من به دنبال خرید دوچرخه جدید هستم.Suzuki Gixxer 155 یا Honda Hornet 160r.کدام
40
+ یک را بخرید؟
41
+ pipeline_tag: sentence-similarity
42
+ library_name: sentence-transformers
43
+ ---
44
+
45
+ # SentenceTransformer based on intfloat/multilingual-e5-small
46
+
47
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** Sentence Transformer
53
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Output Dimensionality:** 384 dimensions
56
+ - **Similarity Function:** Cosine Similarity
57
+ <!-- - **Training Dataset:** Unknown -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
64
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
65
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
66
+
67
+ ### Full Model Architecture
68
+
69
+ ```
70
+ SentenceTransformer(
71
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
72
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
73
+ (2): Normalize()
74
+ )
75
+ ```
76
+
77
+ ## Usage
78
+
79
+ ### Direct Usage (Sentence Transformers)
80
+
81
+ First install the Sentence Transformers library:
82
+
83
+ ```bash
84
+ pip install -U sentence-transformers
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+ ```python
89
+ from sentence_transformers import SentenceTransformer
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SentenceTransformer("codersan/eFuck")
93
+ # Run inference
94
+ sentences = [
95
+ 'برای تبدیل شدن به نویسنده برتر Quora ، چند بازدید و پاسخ لازم است؟',
96
+ 'چگونه می توانم نویسنده برتر Quora شوم ، از صعود بیشتر و آمار بهتر استفاده کنم؟',
97
+ 'من به دنبال خر��د دوچرخه جدید هستم.Suzuki Gixxer 155 یا Honda Hornet 160r.کدام یک را بخرید؟',
98
+ ]
99
+ embeddings = model.encode(sentences)
100
+ print(embeddings.shape)
101
+ # [3, 384]
102
+
103
+ # Get the similarity scores for the embeddings
104
+ similarities = model.similarity(embeddings, embeddings)
105
+ print(similarities.shape)
106
+ # [3, 3]
107
+ ```
108
+
109
+ <!--
110
+ ### Direct Usage (Transformers)
111
+
112
+ <details><summary>Click to see the direct usage in Transformers</summary>
113
+
114
+ </details>
115
+ -->
116
+
117
+ <!--
118
+ ### Downstream Usage (Sentence Transformers)
119
+
120
+ You can finetune this model on your own dataset.
121
+
122
+ <details><summary>Click to expand</summary>
123
+
124
+ </details>
125
+ -->
126
+
127
+ <!--
128
+ ### Out-of-Scope Use
129
+
130
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
131
+ -->
132
+
133
+ <!--
134
+ ## Bias, Risks and Limitations
135
+
136
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
137
+ -->
138
+
139
+ <!--
140
+ ### Recommendations
141
+
142
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
143
+ -->
144
+
145
+ ## Training Details
146
+
147
+ ### Training Dataset
148
+
149
+ #### Unnamed Dataset
150
+
151
+
152
+ * Size: 131,157 training samples
153
+ * Columns: <code>anchor</code> and <code>positive</code>
154
+ * Approximate statistics based on the first 1000 samples:
155
+ | | anchor | positive |
156
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
157
+ | type | string | string |
158
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.81 tokens</li><li>max: 97 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.59 tokens</li><li>max: 59 tokens</li></ul> |
159
+ * Samples:
160
+ | anchor | positive |
161
+ |:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|
162
+ | <code>وقتی سوال من به عنوان "این سوال ممکن است به ویرایش نیاز داشته باشد" چه کاری باید انجام دهم ، اما نمی توانم دلیل آن را پیدا کنم؟</code> | <code>چرا سوال من به عنوان نیاز به پیشرفت مشخص شده است؟</code> |
163
+ | <code>چگونه می توانید یک فایل رمزگذاری شده را با دانستن اینکه این یک فایل تصویری است بدون دانستن گسترش پرونده یا کلید ، رمزگشایی کنید؟</code> | <code>چگونه می توانید یک فایل رمزگذاری شده را رمزگشایی کنید و بدانید که این یک فایل تصویری است بدون اینکه از پسوند پرونده اطلاع داشته باشید؟</code> |
164
+ | <code>احساس می کنم خودکشی می کنم ، چگونه باید با آن برخورد کنم؟</code> | <code>احساس می کنم خودکشی می کنم.چه کاری باید انجام دهم؟</code> |
165
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
166
+ ```json
167
+ {
168
+ "scale": 20.0,
169
+ "similarity_fct": "cos_sim"
170
+ }
171
+ ```
172
+
173
+ ### Training Hyperparameters
174
+ #### Non-Default Hyperparameters
175
+
176
+ - `per_device_train_batch_size`: 32
177
+ - `learning_rate`: 2e-05
178
+ - `weight_decay`: 0.005
179
+ - `num_train_epochs`: 10
180
+ - `warmup_ratio`: 0.1
181
+ - `batch_sampler`: no_duplicates
182
+
183
+ #### All Hyperparameters
184
+ <details><summary>Click to expand</summary>
185
+
186
+ - `overwrite_output_dir`: False
187
+ - `do_predict`: False
188
+ - `eval_strategy`: no
189
+ - `prediction_loss_only`: True
190
+ - `per_device_train_batch_size`: 32
191
+ - `per_device_eval_batch_size`: 8
192
+ - `per_gpu_train_batch_size`: None
193
+ - `per_gpu_eval_batch_size`: None
194
+ - `gradient_accumulation_steps`: 1
195
+ - `eval_accumulation_steps`: None
196
+ - `torch_empty_cache_steps`: None
197
+ - `learning_rate`: 2e-05
198
+ - `weight_decay`: 0.005
199
+ - `adam_beta1`: 0.9
200
+ - `adam_beta2`: 0.999
201
+ - `adam_epsilon`: 1e-08
202
+ - `max_grad_norm`: 1
203
+ - `num_train_epochs`: 10
204
+ - `max_steps`: -1
205
+ - `lr_scheduler_type`: linear
206
+ - `lr_scheduler_kwargs`: {}
207
+ - `warmup_ratio`: 0.1
208
+ - `warmup_steps`: 0
209
+ - `log_level`: passive
210
+ - `log_level_replica`: warning
211
+ - `log_on_each_node`: True
212
+ - `logging_nan_inf_filter`: True
213
+ - `save_safetensors`: True
214
+ - `save_on_each_node`: False
215
+ - `save_only_model`: False
216
+ - `restore_callback_states_from_checkpoint`: False
217
+ - `no_cuda`: False
218
+ - `use_cpu`: False
219
+ - `use_mps_device`: False
220
+ - `seed`: 42
221
+ - `data_seed`: None
222
+ - `jit_mode_eval`: False
223
+ - `use_ipex`: False
224
+ - `bf16`: False
225
+ - `fp16`: False
226
+ - `fp16_opt_level`: O1
227
+ - `half_precision_backend`: auto
228
+ - `bf16_full_eval`: False
229
+ - `fp16_full_eval`: False
230
+ - `tf32`: None
231
+ - `local_rank`: 0
232
+ - `ddp_backend`: None
233
+ - `tpu_num_cores`: None
234
+ - `tpu_metrics_debug`: False
235
+ - `debug`: []
236
+ - `dataloader_drop_last`: False
237
+ - `dataloader_num_workers`: 0
238
+ - `dataloader_prefetch_factor`: None
239
+ - `past_index`: -1
240
+ - `disable_tqdm`: False
241
+ - `remove_unused_columns`: True
242
+ - `label_names`: None
243
+ - `load_best_model_at_end`: False
244
+ - `ignore_data_skip`: False
245
+ - `fsdp`: []
246
+ - `fsdp_min_num_params`: 0
247
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
248
+ - `fsdp_transformer_layer_cls_to_wrap`: None
249
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
250
+ - `deepspeed`: None
251
+ - `label_smoothing_factor`: 0.0
252
+ - `optim`: adamw_torch
253
+ - `optim_args`: None
254
+ - `adafactor`: False
255
+ - `group_by_length`: False
256
+ - `length_column_name`: length
257
+ - `ddp_find_unused_parameters`: None
258
+ - `ddp_bucket_cap_mb`: None
259
+ - `ddp_broadcast_buffers`: False
260
+ - `dataloader_pin_memory`: True
261
+ - `dataloader_persistent_workers`: False
262
+ - `skip_memory_metrics`: True
263
+ - `use_legacy_prediction_loop`: False
264
+ - `push_to_hub`: False
265
+ - `resume_from_checkpoint`: None
266
+ - `hub_model_id`: None
267
+ - `hub_strategy`: every_save
268
+ - `hub_private_repo`: None
269
+ - `hub_always_push`: False
270
+ - `gradient_checkpointing`: False
271
+ - `gradient_checkpointing_kwargs`: None
272
+ - `include_inputs_for_metrics`: False
273
+ - `include_for_metrics`: []
274
+ - `eval_do_concat_batches`: True
275
+ - `fp16_backend`: auto
276
+ - `push_to_hub_model_id`: None
277
+ - `push_to_hub_organization`: None
278
+ - `mp_parameters`:
279
+ - `auto_find_batch_size`: False
280
+ - `full_determinism`: False
281
+ - `torchdynamo`: None
282
+ - `ray_scope`: last
283
+ - `ddp_timeout`: 1800
284
+ - `torch_compile`: False
285
+ - `torch_compile_backend`: None
286
+ - `torch_compile_mode`: None
287
+ - `dispatch_batches`: None
288
+ - `split_batches`: None
289
+ - `include_tokens_per_second`: False
290
+ - `include_num_input_tokens_seen`: False
291
+ - `neftune_noise_alpha`: None
292
+ - `optim_target_modules`: None
293
+ - `batch_eval_metrics`: False
294
+ - `eval_on_start`: False
295
+ - `use_liger_kernel`: False
296
+ - `eval_use_gather_object`: False
297
+ - `average_tokens_across_devices`: False
298
+ - `prompts`: None
299
+ - `batch_sampler`: no_duplicates
300
+ - `multi_dataset_batch_sampler`: proportional
301
+
302
+ </details>
303
+
304
+ ### Training Logs
305
+ <details><summary>Click to expand</summary>
306
+
307
+ | Epoch | Step | Training Loss |
308
+ |:------:|:-----:|:-------------:|
309
+ | 0.0244 | 100 | 1.3984 |
310
+ | 0.0488 | 200 | 0.8762 |
311
+ | 0.0732 | 300 | 0.2492 |
312
+ | 0.0976 | 400 | 0.0754 |
313
+ | 0.1220 | 500 | 0.0809 |
314
+ | 0.1464 | 600 | 0.0789 |
315
+ | 0.1708 | 700 | 0.076 |
316
+ | 0.1952 | 800 | 0.0642 |
317
+ | 0.2196 | 900 | 0.0743 |
318
+ | 0.2440 | 1000 | 0.0605 |
319
+ | 0.2684 | 1100 | 0.0705 |
320
+ | 0.2928 | 1200 | 0.0594 |
321
+ | 0.3172 | 1300 | 0.0565 |
322
+ | 0.3415 | 1400 | 0.071 |
323
+ | 0.3659 | 1500 | 0.0476 |
324
+ | 0.3903 | 1600 | 0.0514 |
325
+ | 0.4147 | 1700 | 0.0584 |
326
+ | 0.4391 | 1800 | 0.0649 |
327
+ | 0.4635 | 1900 | 0.0485 |
328
+ | 0.4879 | 2000 | 0.0556 |
329
+ | 0.5123 | 2100 | 0.0594 |
330
+ | 0.5367 | 2200 | 0.0556 |
331
+ | 0.5611 | 2300 | 0.0439 |
332
+ | 0.5855 | 2400 | 0.0619 |
333
+ | 0.6099 | 2500 | 0.0553 |
334
+ | 0.6343 | 2600 | 0.0393 |
335
+ | 0.6587 | 2700 | 0.0458 |
336
+ | 0.6831 | 2800 | 0.0476 |
337
+ | 0.7075 | 2900 | 0.0535 |
338
+ | 0.7319 | 3000 | 0.0439 |
339
+ | 0.7563 | 3100 | 0.0438 |
340
+ | 0.7807 | 3200 | 0.052 |
341
+ | 0.8051 | 3300 | 0.0514 |
342
+ | 0.8295 | 3400 | 0.0549 |
343
+ | 0.8539 | 3500 | 0.0439 |
344
+ | 0.8783 | 3600 | 0.0429 |
345
+ | 0.9027 | 3700 | 0.0442 |
346
+ | 0.9271 | 3800 | 0.0643 |
347
+ | 0.9515 | 3900 | 0.0408 |
348
+ | 0.9758 | 4000 | 0.0403 |
349
+ | 1.0002 | 4100 | 0.0446 |
350
+ | 1.0246 | 4200 | 0.0527 |
351
+ | 1.0490 | 4300 | 0.0545 |
352
+ | 1.0734 | 4400 | 0.0517 |
353
+ | 1.0978 | 4500 | 0.0299 |
354
+ | 1.1222 | 4600 | 0.0444 |
355
+ | 1.1466 | 4700 | 0.0475 |
356
+ | 1.1710 | 4800 | 0.0414 |
357
+ | 1.1954 | 4900 | 0.0386 |
358
+ | 1.2198 | 5000 | 0.0508 |
359
+ | 1.2442 | 5100 | 0.0384 |
360
+ | 1.2686 | 5200 | 0.0453 |
361
+ | 1.2930 | 5300 | 0.0401 |
362
+ | 1.3174 | 5400 | 0.0328 |
363
+ | 1.3418 | 5500 | 0.0456 |
364
+ | 1.3662 | 5600 | 0.0295 |
365
+ | 1.3906 | 5700 | 0.0366 |
366
+ | 1.4150 | 5800 | 0.0431 |
367
+ | 1.4394 | 5900 | 0.0442 |
368
+ | 1.4638 | 6000 | 0.0343 |
369
+ | 1.4882 | 6100 | 0.0405 |
370
+ | 1.5126 | 6200 | 0.0357 |
371
+ | 1.5370 | 6300 | 0.0423 |
372
+ | 1.5614 | 6400 | 0.0288 |
373
+ | 1.5858 | 6500 | 0.0393 |
374
+ | 1.6101 | 6600 | 0.0369 |
375
+ | 1.6345 | 6700 | 0.0245 |
376
+ | 1.6589 | 6800 | 0.0286 |
377
+ | 1.6833 | 6900 | 0.0325 |
378
+ | 1.7077 | 7000 | 0.0311 |
379
+ | 1.7321 | 7100 | 0.0272 |
380
+ | 1.7565 | 7200 | 0.0261 |
381
+ | 1.7809 | 7300 | 0.0296 |
382
+ | 1.8053 | 7400 | 0.0343 |
383
+ | 1.8297 | 7500 | 0.036 |
384
+ | 1.8541 | 7600 | 0.0225 |
385
+ | 1.8785 | 7700 | 0.0232 |
386
+ | 1.9029 | 7800 | 0.0275 |
387
+ | 1.9273 | 7900 | 0.0394 |
388
+ | 1.9517 | 8000 | 0.0297 |
389
+ | 1.9761 | 8100 | 0.0249 |
390
+ | 2.0005 | 8200 | 0.0268 |
391
+ | 2.0249 | 8300 | 0.0269 |
392
+ | 2.0493 | 8400 | 0.0296 |
393
+ | 2.0737 | 8500 | 0.0326 |
394
+ | 2.0981 | 8600 | 0.0183 |
395
+ | 2.1225 | 8700 | 0.024 |
396
+ | 2.1469 | 8800 | 0.0298 |
397
+ | 2.1713 | 8900 | 0.0273 |
398
+ | 2.1957 | 9000 | 0.0244 |
399
+ | 2.2201 | 9100 | 0.0308 |
400
+ | 2.2444 | 9200 | 0.0247 |
401
+ | 2.2688 | 9300 | 0.0299 |
402
+ | 2.2932 | 9400 | 0.0222 |
403
+ | 2.3176 | 9500 | 0.0213 |
404
+ | 2.3420 | 9600 | 0.0316 |
405
+ | 2.3664 | 9700 | 0.0157 |
406
+ | 2.3908 | 9800 | 0.0248 |
407
+ | 2.4152 | 9900 | 0.028 |
408
+ | 2.4396 | 10000 | 0.0269 |
409
+ | 2.4640 | 10100 | 0.0214 |
410
+ | 2.4884 | 10200 | 0.0242 |
411
+ | 2.5128 | 10300 | 0.0222 |
412
+ | 2.5372 | 10400 | 0.0253 |
413
+ | 2.5616 | 10500 | 0.0175 |
414
+ | 2.5860 | 10600 | 0.0269 |
415
+ | 2.6104 | 10700 | 0.0281 |
416
+ | 2.6348 | 10800 | 0.014 |
417
+ | 2.6592 | 10900 | 0.0187 |
418
+ | 2.6836 | 11000 | 0.0204 |
419
+ | 2.7080 | 11100 | 0.0228 |
420
+ | 2.7324 | 11200 | 0.0193 |
421
+ | 2.7568 | 11300 | 0.014 |
422
+ | 2.7812 | 11400 | 0.0171 |
423
+ | 2.8056 | 11500 | 0.0213 |
424
+ | 2.8300 | 11600 | 0.025 |
425
+ | 2.8544 | 11700 | 0.0138 |
426
+ | 2.8788 | 11800 | 0.0133 |
427
+ | 2.9031 | 11900 | 0.021 |
428
+ | 2.9275 | 12000 | 0.0256 |
429
+ | 2.9519 | 12100 | 0.019 |
430
+ | 2.9763 | 12200 | 0.0149 |
431
+ | 3.0007 | 12300 | 0.0192 |
432
+ | 3.0251 | 12400 | 0.0194 |
433
+ | 3.0495 | 12500 | 0.0179 |
434
+ | 3.0739 | 12600 | 0.0218 |
435
+ | 3.0983 | 12700 | 0.0126 |
436
+ | 3.1227 | 12800 | 0.018 |
437
+ | 3.1471 | 12900 | 0.0188 |
438
+ | 3.1715 | 13000 | 0.0181 |
439
+ | 3.1959 | 13100 | 0.0186 |
440
+ | 3.2203 | 13200 | 0.0235 |
441
+ | 3.2447 | 13300 | 0.0172 |
442
+ | 3.2691 | 13400 | 0.0183 |
443
+ | 3.2935 | 13500 | 0.0155 |
444
+ | 3.3179 | 13600 | 0.0135 |
445
+ | 3.3423 | 13700 | 0.0236 |
446
+ | 3.3667 | 13800 | 0.0115 |
447
+ | 3.3911 | 13900 | 0.0162 |
448
+ | 3.4155 | 14000 | 0.0207 |
449
+ | 3.4399 | 14100 | 0.0174 |
450
+ | 3.4643 | 14200 | 0.0128 |
451
+ | 3.4887 | 14300 | 0.0202 |
452
+ | 3.5131 | 14400 | 0.0165 |
453
+ | 3.5374 | 14500 | 0.0162 |
454
+ | 3.5618 | 14600 | 0.015 |
455
+ | 3.5862 | 14700 | 0.0203 |
456
+ | 3.6106 | 14800 | 0.0222 |
457
+ | 3.6350 | 14900 | 0.0105 |
458
+ | 3.6594 | 15000 | 0.014 |
459
+ | 3.6838 | 15100 | 0.0146 |
460
+ | 3.7082 | 15200 | 0.015 |
461
+ | 3.7326 | 15300 | 0.0153 |
462
+ | 3.7570 | 15400 | 0.0099 |
463
+ | 3.7814 | 15500 | 0.0105 |
464
+ | 3.8058 | 15600 | 0.0168 |
465
+ | 3.8302 | 15700 | 0.0185 |
466
+ | 3.8546 | 15800 | 0.0104 |
467
+ | 3.8790 | 15900 | 0.01 |
468
+ | 3.9034 | 16000 | 0.0142 |
469
+ | 3.9278 | 16100 | 0.0197 |
470
+ | 3.9522 | 16200 | 0.013 |
471
+ | 3.9766 | 16300 | 0.0137 |
472
+ | 4.0010 | 16400 | 0.0133 |
473
+ | 4.0254 | 16500 | 0.0132 |
474
+ | 4.0498 | 16600 | 0.0124 |
475
+ | 4.0742 | 16700 | 0.0141 |
476
+ | 4.0986 | 16800 | 0.0099 |
477
+ | 4.1230 | 16900 | 0.0113 |
478
+ | 4.1474 | 17000 | 0.0149 |
479
+ | 4.1717 | 17100 | 0.0145 |
480
+ | 4.1961 | 17200 | 0.0129 |
481
+ | 4.2205 | 17300 | 0.0185 |
482
+ | 4.2449 | 17400 | 0.0138 |
483
+ | 4.2693 | 17500 | 0.0133 |
484
+ | 4.2937 | 17600 | 0.0107 |
485
+ | 4.3181 | 17700 | 0.0092 |
486
+ | 4.3425 | 17800 | 0.0175 |
487
+ | 4.3669 | 17900 | 0.0097 |
488
+ | 4.3913 | 18000 | 0.0111 |
489
+ | 4.4157 | 18100 | 0.0136 |
490
+ | 4.4401 | 18200 | 0.0122 |
491
+ | 4.4645 | 18300 | 0.0095 |
492
+ | 4.4889 | 18400 | 0.0141 |
493
+ | 4.5133 | 18500 | 0.0094 |
494
+ | 4.5377 | 18600 | 0.0123 |
495
+ | 4.5621 | 18700 | 0.0108 |
496
+ | 4.5865 | 18800 | 0.0145 |
497
+ | 4.6109 | 18900 | 0.0195 |
498
+ | 4.6353 | 19000 | 0.0099 |
499
+ | 4.6597 | 19100 | 0.0107 |
500
+ | 4.6841 | 19200 | 0.0105 |
501
+ | 4.7085 | 19300 | 0.0124 |
502
+ | 4.7329 | 19400 | 0.012 |
503
+ | 4.7573 | 19500 | 0.0081 |
504
+ | 4.7817 | 19600 | 0.0081 |
505
+ | 4.8061 | 19700 | 0.0111 |
506
+ | 4.8304 | 19800 | 0.0141 |
507
+ | 4.8548 | 19900 | 0.0073 |
508
+ | 4.8792 | 20000 | 0.0094 |
509
+ | 4.9036 | 20100 | 0.011 |
510
+ | 4.9280 | 20200 | 0.0157 |
511
+ | 4.9524 | 20300 | 0.0086 |
512
+ | 4.9768 | 20400 | 0.0093 |
513
+ | 5.0012 | 20500 | 0.011 |
514
+ | 5.0256 | 20600 | 0.0107 |
515
+ | 5.0500 | 20700 | 0.0094 |
516
+ | 5.0744 | 20800 | 0.008 |
517
+ | 5.0988 | 20900 | 0.0076 |
518
+ | 5.1232 | 21000 | 0.0088 |
519
+ | 5.1476 | 21100 | 0.0119 |
520
+ | 5.1720 | 21200 | 0.0118 |
521
+ | 5.1964 | 21300 | 0.0105 |
522
+ | 5.2208 | 21400 | 0.0138 |
523
+ | 5.2452 | 21500 | 0.0109 |
524
+ | 5.2696 | 21600 | 0.0101 |
525
+ | 5.2940 | 21700 | 0.008 |
526
+ | 5.3184 | 21800 | 0.0068 |
527
+ | 5.3428 | 21900 | 0.0123 |
528
+ | 5.3672 | 22000 | 0.0086 |
529
+ | 5.3916 | 22100 | 0.0084 |
530
+ | 5.4160 | 22200 | 0.0113 |
531
+ | 5.4404 | 22300 | 0.0086 |
532
+ | 5.4647 | 22400 | 0.0076 |
533
+ | 5.4891 | 22500 | 0.0101 |
534
+ | 5.5135 | 22600 | 0.0083 |
535
+ | 5.5379 | 22700 | 0.0116 |
536
+ | 5.5623 | 22800 | 0.0083 |
537
+ | 5.5867 | 22900 | 0.0137 |
538
+ | 5.6111 | 23000 | 0.0144 |
539
+ | 5.6355 | 23100 | 0.0081 |
540
+ | 5.6599 | 23200 | 0.006 |
541
+ | 5.6843 | 23300 | 0.0096 |
542
+ | 5.7087 | 23400 | 0.0098 |
543
+ | 5.7331 | 23500 | 0.0096 |
544
+ | 5.7575 | 23600 | 0.0063 |
545
+ | 5.7819 | 23700 | 0.0052 |
546
+ | 5.8063 | 23800 | 0.008 |
547
+ | 5.8307 | 23900 | 0.0117 |
548
+ | 5.8551 | 24000 | 0.0053 |
549
+ | 5.8795 | 24100 | 0.0077 |
550
+ | 5.9039 | 24200 | 0.0086 |
551
+ | 5.9283 | 24300 | 0.0129 |
552
+ | 5.9527 | 24400 | 0.0085 |
553
+ | 5.9771 | 24500 | 0.0064 |
554
+ | 6.0015 | 24600 | 0.0092 |
555
+ | 6.0259 | 24700 | 0.0076 |
556
+ | 6.0503 | 24800 | 0.0078 |
557
+ | 6.0747 | 24900 | 0.0074 |
558
+ | 6.0990 | 25000 | 0.0064 |
559
+ | 6.1234 | 25100 | 0.0067 |
560
+ | 6.1478 | 25200 | 0.0091 |
561
+ | 6.1722 | 25300 | 0.0087 |
562
+ | 6.1966 | 25400 | 0.0076 |
563
+ | 6.2210 | 25500 | 0.0104 |
564
+ | 6.2454 | 25600 | 0.0077 |
565
+ | 6.2698 | 25700 | 0.0074 |
566
+ | 6.2942 | 25800 | 0.0055 |
567
+ | 6.3186 | 25900 | 0.0059 |
568
+ | 6.3430 | 26000 | 0.0092 |
569
+ | 6.3674 | 26100 | 0.0051 |
570
+ | 6.3918 | 26200 | 0.0075 |
571
+ | 6.4162 | 26300 | 0.0093 |
572
+ | 6.4406 | 26400 | 0.0073 |
573
+ | 6.4650 | 26500 | 0.0051 |
574
+ | 6.4894 | 26600 | 0.0093 |
575
+ | 6.5138 | 26700 | 0.0065 |
576
+ | 6.5382 | 26800 | 0.0072 |
577
+ | 6.5626 | 26900 | 0.0075 |
578
+ | 6.5870 | 27000 | 0.0111 |
579
+ | 6.6114 | 27100 | 0.0139 |
580
+ | 6.6358 | 27200 | 0.0066 |
581
+ | 6.6602 | 27300 | 0.0062 |
582
+ | 6.6846 | 27400 | 0.0078 |
583
+ | 6.7090 | 27500 | 0.0084 |
584
+ | 6.7333 | 27600 | 0.0077 |
585
+ | 6.7577 | 27700 | 0.0055 |
586
+ | 6.7821 | 27800 | 0.0039 |
587
+ | 6.8065 | 27900 | 0.0082 |
588
+ | 6.8309 | 28000 | 0.0101 |
589
+ | 6.8553 | 28100 | 0.0041 |
590
+ | 6.8797 | 28200 | 0.0058 |
591
+ | 6.9041 | 28300 | 0.0058 |
592
+ | 6.9285 | 28400 | 0.0109 |
593
+ | 6.9529 | 28500 | 0.0054 |
594
+ | 6.9773 | 28600 | 0.0061 |
595
+ | 7.0017 | 28700 | 0.0078 |
596
+ | 7.0261 | 28800 | 0.0065 |
597
+ | 7.0505 | 28900 | 0.0061 |
598
+ | 7.0749 | 29000 | 0.0049 |
599
+ | 7.0993 | 29100 | 0.0062 |
600
+ | 7.1237 | 29200 | 0.0052 |
601
+ | 7.1481 | 29300 | 0.0073 |
602
+ | 7.1725 | 29400 | 0.0072 |
603
+ | 7.1969 | 29500 | 0.0067 |
604
+ | 7.2213 | 29600 | 0.0093 |
605
+ | 7.2457 | 29700 | 0.008 |
606
+ | 7.2701 | 29800 | 0.0057 |
607
+ | 7.2945 | 29900 | 0.0051 |
608
+ | 7.3189 | 30000 | 0.0046 |
609
+ | 7.3433 | 30100 | 0.0078 |
610
+ | 7.3677 | 30200 | 0.0041 |
611
+ | 7.3920 | 30300 | 0.0054 |
612
+ | 7.4164 | 30400 | 0.008 |
613
+ | 7.4408 | 30500 | 0.0056 |
614
+ | 7.4652 | 30600 | 0.0037 |
615
+ | 7.4896 | 30700 | 0.0071 |
616
+ | 7.5140 | 30800 | 0.0058 |
617
+ | 7.5384 | 30900 | 0.0074 |
618
+ | 7.5628 | 31000 | 0.0059 |
619
+ | 7.5872 | 31100 | 0.0088 |
620
+ | 7.6116 | 31200 | 0.0102 |
621
+ | 7.6360 | 31300 | 0.0058 |
622
+ | 7.6604 | 31400 | 0.0044 |
623
+ | 7.6848 | 31500 | 0.0065 |
624
+ | 7.7092 | 31600 | 0.007 |
625
+ | 7.7336 | 31700 | 0.0078 |
626
+ | 7.7580 | 31800 | 0.0048 |
627
+ | 7.7824 | 31900 | 0.0033 |
628
+ | 7.8068 | 32000 | 0.0063 |
629
+ | 7.8312 | 32100 | 0.008 |
630
+ | 7.8556 | 32200 | 0.004 |
631
+ | 7.8800 | 32300 | 0.0057 |
632
+ | 7.9044 | 32400 | 0.005 |
633
+ | 7.9288 | 32500 | 0.0095 |
634
+ | 7.9532 | 32600 | 0.0042 |
635
+ | 7.9776 | 32700 | 0.0058 |
636
+ | 8.0020 | 32800 | 0.006 |
637
+ | 8.0263 | 32900 | 0.006 |
638
+ | 8.0507 | 33000 | 0.0054 |
639
+ | 8.0751 | 33100 | 0.0041 |
640
+ | 8.0995 | 33200 | 0.0045 |
641
+ | 8.1239 | 33300 | 0.0052 |
642
+ | 8.1483 | 33400 | 0.0067 |
643
+ | 8.1727 | 33500 | 0.008 |
644
+ | 8.1971 | 33600 | 0.0047 |
645
+ | 8.2215 | 33700 | 0.0079 |
646
+ | 8.2459 | 33800 | 0.0071 |
647
+ | 8.2703 | 33900 | 0.0043 |
648
+ | 8.2947 | 34000 | 0.0041 |
649
+ | 8.3191 | 34100 | 0.0035 |
650
+ | 8.3435 | 34200 | 0.0059 |
651
+ | 8.3679 | 34300 | 0.004 |
652
+ | 8.3923 | 34400 | 0.005 |
653
+ | 8.4167 | 34500 | 0.0067 |
654
+ | 8.4411 | 34600 | 0.0049 |
655
+ | 8.4655 | 34700 | 0.0034 |
656
+ | 8.4899 | 34800 | 0.0057 |
657
+ | 8.5143 | 34900 | 0.0052 |
658
+ | 8.5387 | 35000 | 0.005 |
659
+ | 8.5631 | 35100 | 0.0047 |
660
+ | 8.5875 | 35200 | 0.0089 |
661
+ | 8.6119 | 35300 | 0.0066 |
662
+ | 8.6363 | 35400 | 0.0044 |
663
+ | 8.6606 | 35500 | 0.0037 |
664
+ | 8.6850 | 35600 | 0.0059 |
665
+ | 8.7094 | 35700 | 0.0069 |
666
+ | 8.7338 | 35800 | 0.0069 |
667
+ | 8.7582 | 35900 | 0.0038 |
668
+ | 8.7826 | 36000 | 0.0028 |
669
+ | 8.8070 | 36100 | 0.0047 |
670
+ | 8.8314 | 36200 | 0.007 |
671
+ | 8.8558 | 36300 | 0.0036 |
672
+ | 8.8802 | 36400 | 0.0049 |
673
+ | 8.9046 | 36500 | 0.0041 |
674
+ | 8.9290 | 36600 | 0.0085 |
675
+ | 8.9534 | 36700 | 0.004 |
676
+ | 8.9778 | 36800 | 0.0044 |
677
+ | 9.0022 | 36900 | 0.0053 |
678
+ | 9.0266 | 37000 | 0.006 |
679
+ | 9.0510 | 37100 | 0.0051 |
680
+ | 9.0754 | 37200 | 0.0029 |
681
+ | 9.0998 | 37300 | 0.0041 |
682
+ | 9.1242 | 37400 | 0.0046 |
683
+ | 9.1486 | 37500 | 0.0057 |
684
+ | 9.1730 | 37600 | 0.0063 |
685
+ | 9.1974 | 37700 | 0.0048 |
686
+ | 9.2218 | 37800 | 0.0077 |
687
+ | 9.2462 | 37900 | 0.0056 |
688
+ | 9.2706 | 38000 | 0.0039 |
689
+ | 9.2949 | 38100 | 0.0036 |
690
+ | 9.3193 | 38200 | 0.0032 |
691
+ | 9.3437 | 38300 | 0.0055 |
692
+ | 9.3681 | 38400 | 0.0037 |
693
+ | 9.3925 | 38500 | 0.0045 |
694
+ | 9.4169 | 38600 | 0.0065 |
695
+ | 9.4413 | 38700 | 0.0047 |
696
+ | 9.4657 | 38800 | 0.0033 |
697
+ | 9.4901 | 38900 | 0.0052 |
698
+ | 9.5145 | 39000 | 0.0043 |
699
+ | 9.5389 | 39100 | 0.0043 |
700
+ | 9.5633 | 39200 | 0.0049 |
701
+ | 9.5877 | 39300 | 0.0074 |
702
+ | 9.6121 | 39400 | 0.0054 |
703
+ | 9.6365 | 39500 | 0.004 |
704
+ | 9.6609 | 39600 | 0.0031 |
705
+ | 9.6853 | 39700 | 0.0054 |
706
+ | 9.7097 | 39800 | 0.0061 |
707
+ | 9.7341 | 39900 | 0.0055 |
708
+ | 9.7585 | 40000 | 0.0033 |
709
+ | 9.7829 | 40100 | 0.0028 |
710
+ | 9.8073 | 40200 | 0.0046 |
711
+ | 9.8317 | 40300 | 0.0062 |
712
+ | 9.8561 | 40400 | 0.0033 |
713
+ | 9.8805 | 40500 | 0.0047 |
714
+ | 9.9049 | 40600 | 0.0045 |
715
+ | 9.9293 | 40700 | 0.0075 |
716
+ | 9.9536 | 40800 | 0.0035 |
717
+ | 9.9780 | 40900 | 0.0038 |
718
+
719
+ </details>
720
+
721
+ ### Framework Versions
722
+ - Python: 3.10.12
723
+ - Sentence Transformers: 3.3.1
724
+ - Transformers: 4.47.0
725
+ - PyTorch: 2.5.1+cu121
726
+ - Accelerate: 1.2.1
727
+ - Datasets: 4.0.0
728
+ - Tokenizers: 0.21.0
729
+
730
+ ## Citation
731
+
732
+ ### BibTeX
733
+
734
+ #### Sentence Transformers
735
+ ```bibtex
736
+ @inproceedings{reimers-2019-sentence-bert,
737
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
738
+ author = "Reimers, Nils and Gurevych, Iryna",
739
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
740
+ month = "11",
741
+ year = "2019",
742
+ publisher = "Association for Computational Linguistics",
743
+ url = "https://arxiv.org/abs/1908.10084",
744
+ }
745
+ ```
746
+
747
+ #### MultipleNegativesRankingLoss
748
+ ```bibtex
749
+ @misc{henderson2017efficient,
750
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
751
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
752
+ year={2017},
753
+ eprint={1705.00652},
754
+ archivePrefix={arXiv},
755
+ primaryClass={cs.CL}
756
+ }
757
+ ```
758
+
759
+ <!--
760
+ ## Glossary
761
+
762
+ *Clearly define terms in order to be accessible across audiences.*
763
+ -->
764
+
765
+ <!--
766
+ ## Model Card Authors
767
+
768
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
769
+ -->
770
+
771
+ <!--
772
+ ## Model Card Contact
773
+
774
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
775
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c21a1606b9d53642bcb9f06f7cd6ab913e4d8bd59cf578c715cce7d13b851c7c
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }