Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +498 -0
- config_sentence_transformers.json +10 -0
- modules.json +26 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:758b5aea27f6d4ea5f6af80838a59727d8b960a4625a6f1cd4d894a52854020c
|
3 |
+
size 2362528
|
README.md
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:172826
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: sentence-transformers/LaBSE
|
10 |
+
widget:
|
11 |
+
- source_sentence: How do you make Yahoo your homepage?
|
12 |
+
sentences:
|
13 |
+
- چگونه ویکی پدیا بدون تبلیغ در وب سایت خود درآمد کسب می کند؟
|
14 |
+
- چگونه می توانم برای امتحان INS 21 آماده شوم؟
|
15 |
+
- How can I make Yahoo my homepage on my browser?
|
16 |
+
- source_sentence: کدام VPN رایگان در چین کار می کند؟
|
17 |
+
sentences:
|
18 |
+
- VPN های رایگان که در چین کار می کنند چیست؟
|
19 |
+
- How can I stop masturbations?
|
20 |
+
- آیا مدرسه خلاقیت را می کشد؟
|
21 |
+
- source_sentence: چند روش خوب برای کاهش وزن چیست؟
|
22 |
+
sentences:
|
23 |
+
- چگونه می توانم یک کتاب خوب بنویسم؟
|
24 |
+
- من اضافه وزن دارمچگونه می توانم وزن کم کنم؟
|
25 |
+
- آیا می توانید ببینید چه کسی داستانهای اینستاگرام شما را مشاهده می کند؟
|
26 |
+
- source_sentence: چگونه می توان یک Dell Inspiron 1525 را به تنظیمات کارخانه بازگرداند؟
|
27 |
+
sentences:
|
28 |
+
- چگونه می توان یک Dell Inspiron B130 را به تنظیمات کارخانه بازگرداند؟
|
29 |
+
- مبدل چیست؟
|
30 |
+
- چگونه زندگی شما بعد از تشخیص HIV مثبت تغییر کرد؟
|
31 |
+
- source_sentence: داشتن هزاران دنبال کننده در Quora چگونه است؟
|
32 |
+
sentences:
|
33 |
+
- چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟
|
34 |
+
- چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟
|
35 |
+
- اگر هند واردات همه محصولات چینی را ممنوع کند ، چه می شود؟
|
36 |
+
pipeline_tag: sentence-similarity
|
37 |
+
library_name: sentence-transformers
|
38 |
+
---
|
39 |
+
|
40 |
+
# SentenceTransformer based on sentence-transformers/LaBSE
|
41 |
+
|
42 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** Sentence Transformer
|
48 |
+
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
|
49 |
+
- **Maximum Sequence Length:** 256 tokens
|
50 |
+
- **Output Dimensionality:** 768 dimensions
|
51 |
+
- **Similarity Function:** Cosine Similarity
|
52 |
+
<!-- - **Training Dataset:** Unknown -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
59 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
60 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
61 |
+
|
62 |
+
### Full Model Architecture
|
63 |
+
|
64 |
+
```
|
65 |
+
SentenceTransformer(
|
66 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
67 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
68 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
69 |
+
(3): Normalize()
|
70 |
+
)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Usage
|
74 |
+
|
75 |
+
### Direct Usage (Sentence Transformers)
|
76 |
+
|
77 |
+
First install the Sentence Transformers library:
|
78 |
+
|
79 |
+
```bash
|
80 |
+
pip install -U sentence-transformers
|
81 |
+
```
|
82 |
+
|
83 |
+
Then you can load this model and run inference.
|
84 |
+
```python
|
85 |
+
from sentence_transformers import SentenceTransformer
|
86 |
+
|
87 |
+
# Download from the 🤗 Hub
|
88 |
+
model = SentenceTransformer("codersan/validadted_faLabse_withCosSim")
|
89 |
+
# Run inference
|
90 |
+
sentences = [
|
91 |
+
'داشتن هزاران دنبال کننده در Quora چگونه است؟',
|
92 |
+
'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
|
93 |
+
'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
|
94 |
+
]
|
95 |
+
embeddings = model.encode(sentences)
|
96 |
+
print(embeddings.shape)
|
97 |
+
# [3, 768]
|
98 |
+
|
99 |
+
# Get the similarity scores for the embeddings
|
100 |
+
similarities = model.similarity(embeddings, embeddings)
|
101 |
+
print(similarities.shape)
|
102 |
+
# [3, 3]
|
103 |
+
```
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Direct Usage (Transformers)
|
107 |
+
|
108 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
109 |
+
|
110 |
+
</details>
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Downstream Usage (Sentence Transformers)
|
115 |
+
|
116 |
+
You can finetune this model on your own dataset.
|
117 |
+
|
118 |
+
<details><summary>Click to expand</summary>
|
119 |
+
|
120 |
+
</details>
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Out-of-Scope Use
|
125 |
+
|
126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
## Bias, Risks and Limitations
|
131 |
+
|
132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Recommendations
|
137 |
+
|
138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
## Training Details
|
142 |
+
|
143 |
+
### Training Dataset
|
144 |
+
|
145 |
+
#### Unnamed Dataset
|
146 |
+
|
147 |
+
|
148 |
+
* Size: 172,826 training samples
|
149 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
150 |
+
* Approximate statistics based on the first 1000 samples:
|
151 |
+
| | sentence1 | sentence2 | score |
|
152 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
153 |
+
| type | string | string | float |
|
154 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 15.2 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.47 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.76</li><li>mean: 0.95</li><li>max: 1.0</li></ul> |
|
155 |
+
* Samples:
|
156 |
+
| sentence1 | sentence2 | score |
|
157 |
+
|:-------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------|
|
158 |
+
| <code>تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟</code> | <code>تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟</code> | <code>0.982593297958374</code> |
|
159 |
+
| <code>خوردن چه چیزی باعث دل درد میشود؟</code> | <code>چه چیزی باعث رفع دل درد میشود؟</code> | <code>0.9582258462905884</code> |
|
160 |
+
| <code>بهترین نرم افزار ویرایش ویدیویی کدام است؟</code> | <code>بهترین نرم افزار برای ویرایش ویدیو چیست؟</code> | <code>0.9890836477279663</code> |
|
161 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
162 |
+
```json
|
163 |
+
{
|
164 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
165 |
+
}
|
166 |
+
```
|
167 |
+
|
168 |
+
### Training Hyperparameters
|
169 |
+
#### Non-Default Hyperparameters
|
170 |
+
|
171 |
+
- `eval_strategy`: steps
|
172 |
+
- `per_device_train_batch_size`: 12
|
173 |
+
- `learning_rate`: 5e-06
|
174 |
+
- `weight_decay`: 0.01
|
175 |
+
- `num_train_epochs`: 1
|
176 |
+
- `warmup_ratio`: 0.1
|
177 |
+
- `push_to_hub`: True
|
178 |
+
- `hub_model_id`: codersan/validadted_faLabse_withCosSim
|
179 |
+
- `eval_on_start`: True
|
180 |
+
- `batch_sampler`: no_duplicates
|
181 |
+
|
182 |
+
#### All Hyperparameters
|
183 |
+
<details><summary>Click to expand</summary>
|
184 |
+
|
185 |
+
- `overwrite_output_dir`: False
|
186 |
+
- `do_predict`: False
|
187 |
+
- `eval_strategy`: steps
|
188 |
+
- `prediction_loss_only`: True
|
189 |
+
- `per_device_train_batch_size`: 12
|
190 |
+
- `per_device_eval_batch_size`: 8
|
191 |
+
- `per_gpu_train_batch_size`: None
|
192 |
+
- `per_gpu_eval_batch_size`: None
|
193 |
+
- `gradient_accumulation_steps`: 1
|
194 |
+
- `eval_accumulation_steps`: None
|
195 |
+
- `torch_empty_cache_steps`: None
|
196 |
+
- `learning_rate`: 5e-06
|
197 |
+
- `weight_decay`: 0.01
|
198 |
+
- `adam_beta1`: 0.9
|
199 |
+
- `adam_beta2`: 0.999
|
200 |
+
- `adam_epsilon`: 1e-08
|
201 |
+
- `max_grad_norm`: 1
|
202 |
+
- `num_train_epochs`: 1
|
203 |
+
- `max_steps`: -1
|
204 |
+
- `lr_scheduler_type`: linear
|
205 |
+
- `lr_scheduler_kwargs`: {}
|
206 |
+
- `warmup_ratio`: 0.1
|
207 |
+
- `warmup_steps`: 0
|
208 |
+
- `log_level`: passive
|
209 |
+
- `log_level_replica`: warning
|
210 |
+
- `log_on_each_node`: True
|
211 |
+
- `logging_nan_inf_filter`: True
|
212 |
+
- `save_safetensors`: True
|
213 |
+
- `save_on_each_node`: False
|
214 |
+
- `save_only_model`: False
|
215 |
+
- `restore_callback_states_from_checkpoint`: False
|
216 |
+
- `no_cuda`: False
|
217 |
+
- `use_cpu`: False
|
218 |
+
- `use_mps_device`: False
|
219 |
+
- `seed`: 42
|
220 |
+
- `data_seed`: None
|
221 |
+
- `jit_mode_eval`: False
|
222 |
+
- `use_ipex`: False
|
223 |
+
- `bf16`: False
|
224 |
+
- `fp16`: False
|
225 |
+
- `fp16_opt_level`: O1
|
226 |
+
- `half_precision_backend`: auto
|
227 |
+
- `bf16_full_eval`: False
|
228 |
+
- `fp16_full_eval`: False
|
229 |
+
- `tf32`: None
|
230 |
+
- `local_rank`: 0
|
231 |
+
- `ddp_backend`: None
|
232 |
+
- `tpu_num_cores`: None
|
233 |
+
- `tpu_metrics_debug`: False
|
234 |
+
- `debug`: []
|
235 |
+
- `dataloader_drop_last`: False
|
236 |
+
- `dataloader_num_workers`: 0
|
237 |
+
- `dataloader_prefetch_factor`: None
|
238 |
+
- `past_index`: -1
|
239 |
+
- `disable_tqdm`: False
|
240 |
+
- `remove_unused_columns`: True
|
241 |
+
- `label_names`: None
|
242 |
+
- `load_best_model_at_end`: False
|
243 |
+
- `ignore_data_skip`: False
|
244 |
+
- `fsdp`: []
|
245 |
+
- `fsdp_min_num_params`: 0
|
246 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
247 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
248 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
249 |
+
- `deepspeed`: None
|
250 |
+
- `label_smoothing_factor`: 0.0
|
251 |
+
- `optim`: adamw_torch
|
252 |
+
- `optim_args`: None
|
253 |
+
- `adafactor`: False
|
254 |
+
- `group_by_length`: False
|
255 |
+
- `length_column_name`: length
|
256 |
+
- `ddp_find_unused_parameters`: None
|
257 |
+
- `ddp_bucket_cap_mb`: None
|
258 |
+
- `ddp_broadcast_buffers`: False
|
259 |
+
- `dataloader_pin_memory`: True
|
260 |
+
- `dataloader_persistent_workers`: False
|
261 |
+
- `skip_memory_metrics`: True
|
262 |
+
- `use_legacy_prediction_loop`: False
|
263 |
+
- `push_to_hub`: True
|
264 |
+
- `resume_from_checkpoint`: None
|
265 |
+
- `hub_model_id`: codersan/validadted_faLabse_withCosSim
|
266 |
+
- `hub_strategy`: every_save
|
267 |
+
- `hub_private_repo`: None
|
268 |
+
- `hub_always_push`: False
|
269 |
+
- `gradient_checkpointing`: False
|
270 |
+
- `gradient_checkpointing_kwargs`: None
|
271 |
+
- `include_inputs_for_metrics`: False
|
272 |
+
- `include_for_metrics`: []
|
273 |
+
- `eval_do_concat_batches`: True
|
274 |
+
- `fp16_backend`: auto
|
275 |
+
- `push_to_hub_model_id`: None
|
276 |
+
- `push_to_hub_organization`: None
|
277 |
+
- `mp_parameters`:
|
278 |
+
- `auto_find_batch_size`: False
|
279 |
+
- `full_determinism`: False
|
280 |
+
- `torchdynamo`: None
|
281 |
+
- `ray_scope`: last
|
282 |
+
- `ddp_timeout`: 1800
|
283 |
+
- `torch_compile`: False
|
284 |
+
- `torch_compile_backend`: None
|
285 |
+
- `torch_compile_mode`: None
|
286 |
+
- `dispatch_batches`: None
|
287 |
+
- `split_batches`: None
|
288 |
+
- `include_tokens_per_second`: False
|
289 |
+
- `include_num_input_tokens_seen`: False
|
290 |
+
- `neftune_noise_alpha`: None
|
291 |
+
- `optim_target_modules`: None
|
292 |
+
- `batch_eval_metrics`: False
|
293 |
+
- `eval_on_start`: True
|
294 |
+
- `use_liger_kernel`: False
|
295 |
+
- `eval_use_gather_object`: False
|
296 |
+
- `average_tokens_across_devices`: False
|
297 |
+
- `prompts`: None
|
298 |
+
- `batch_sampler`: no_duplicates
|
299 |
+
- `multi_dataset_batch_sampler`: proportional
|
300 |
+
|
301 |
+
</details>
|
302 |
+
|
303 |
+
### Training Logs
|
304 |
+
<details><summary>Click to expand</summary>
|
305 |
+
|
306 |
+
| Epoch | Step | Training Loss |
|
307 |
+
|:------:|:-----:|:-------------:|
|
308 |
+
| 0 | 0 | - |
|
309 |
+
| 0.0069 | 100 | 0.0299 |
|
310 |
+
| 0.0139 | 200 | 0.0185 |
|
311 |
+
| 0.0208 | 300 | 0.0063 |
|
312 |
+
| 0.0278 | 400 | 0.0021 |
|
313 |
+
| 0.0347 | 500 | 0.0009 |
|
314 |
+
| 0.0417 | 600 | 0.0006 |
|
315 |
+
| 0.0486 | 700 | 0.0006 |
|
316 |
+
| 0.0555 | 800 | 0.0005 |
|
317 |
+
| 0.0625 | 900 | 0.0005 |
|
318 |
+
| 0.0694 | 1000 | 0.0005 |
|
319 |
+
| 0.0764 | 1100 | 0.0005 |
|
320 |
+
| 0.0833 | 1200 | 0.0004 |
|
321 |
+
| 0.0903 | 1300 | 0.0004 |
|
322 |
+
| 0.0972 | 1400 | 0.0004 |
|
323 |
+
| 0.1041 | 1500 | 0.0004 |
|
324 |
+
| 0.1111 | 1600 | 0.0004 |
|
325 |
+
| 0.1180 | 1700 | 0.0004 |
|
326 |
+
| 0.1250 | 1800 | 0.0003 |
|
327 |
+
| 0.1319 | 1900 | 0.0003 |
|
328 |
+
| 0.1389 | 2000 | 0.0003 |
|
329 |
+
| 0.1458 | 2100 | 0.0003 |
|
330 |
+
| 0.1527 | 2200 | 0.0003 |
|
331 |
+
| 0.1597 | 2300 | 0.0003 |
|
332 |
+
| 0.1666 | 2400 | 0.0003 |
|
333 |
+
| 0.1736 | 2500 | 0.0003 |
|
334 |
+
| 0.1805 | 2600 | 0.0003 |
|
335 |
+
| 0.1875 | 2700 | 0.0003 |
|
336 |
+
| 0.1944 | 2800 | 0.0003 |
|
337 |
+
| 0.2013 | 2900 | 0.0003 |
|
338 |
+
| 0.2083 | 3000 | 0.0003 |
|
339 |
+
| 0.2152 | 3100 | 0.0003 |
|
340 |
+
| 0.2222 | 3200 | 0.0002 |
|
341 |
+
| 0.2291 | 3300 | 0.0003 |
|
342 |
+
| 0.2361 | 3400 | 0.0003 |
|
343 |
+
| 0.2430 | 3500 | 0.0002 |
|
344 |
+
| 0.2499 | 3600 | 0.0003 |
|
345 |
+
| 0.2569 | 3700 | 0.0003 |
|
346 |
+
| 0.2638 | 3800 | 0.0003 |
|
347 |
+
| 0.2708 | 3900 | 0.0002 |
|
348 |
+
| 0.2777 | 4000 | 0.0003 |
|
349 |
+
| 0.2847 | 4100 | 0.0003 |
|
350 |
+
| 0.2916 | 4200 | 0.0002 |
|
351 |
+
| 0.2985 | 4300 | 0.0002 |
|
352 |
+
| 0.3055 | 4400 | 0.0002 |
|
353 |
+
| 0.3124 | 4500 | 0.0002 |
|
354 |
+
| 0.3194 | 4600 | 0.0002 |
|
355 |
+
| 0.3263 | 4700 | 0.0002 |
|
356 |
+
| 0.3333 | 4800 | 0.0003 |
|
357 |
+
| 0.3402 | 4900 | 0.0002 |
|
358 |
+
| 0.3471 | 5000 | 0.0002 |
|
359 |
+
| 0.3541 | 5100 | 0.0002 |
|
360 |
+
| 0.3610 | 5200 | 0.0002 |
|
361 |
+
| 0.3680 | 5300 | 0.0002 |
|
362 |
+
| 0.3749 | 5400 | 0.0002 |
|
363 |
+
| 0.3819 | 5500 | 0.0002 |
|
364 |
+
| 0.3888 | 5600 | 0.0002 |
|
365 |
+
| 0.3958 | 5700 | 0.0002 |
|
366 |
+
| 0.4027 | 5800 | 0.0002 |
|
367 |
+
| 0.4096 | 5900 | 0.0002 |
|
368 |
+
| 0.4166 | 6000 | 0.0002 |
|
369 |
+
| 0.4235 | 6100 | 0.0002 |
|
370 |
+
| 0.4305 | 6200 | 0.0002 |
|
371 |
+
| 0.4374 | 6300 | 0.0002 |
|
372 |
+
| 0.4444 | 6400 | 0.0002 |
|
373 |
+
| 0.4513 | 6500 | 0.0002 |
|
374 |
+
| 0.4582 | 6600 | 0.0002 |
|
375 |
+
| 0.4652 | 6700 | 0.0002 |
|
376 |
+
| 0.4721 | 6800 | 0.0002 |
|
377 |
+
| 0.4791 | 6900 | 0.0002 |
|
378 |
+
| 0.4860 | 7000 | 0.0002 |
|
379 |
+
| 0.4930 | 7100 | 0.0002 |
|
380 |
+
| 0.4999 | 7200 | 0.0002 |
|
381 |
+
| 0.5068 | 7300 | 0.0002 |
|
382 |
+
| 0.5138 | 7400 | 0.0002 |
|
383 |
+
| 0.5207 | 7500 | 0.0002 |
|
384 |
+
| 0.5277 | 7600 | 0.0002 |
|
385 |
+
| 0.5346 | 7700 | 0.0002 |
|
386 |
+
| 0.5416 | 7800 | 0.0002 |
|
387 |
+
| 0.5485 | 7900 | 0.0002 |
|
388 |
+
| 0.5554 | 8000 | 0.0002 |
|
389 |
+
| 0.5624 | 8100 | 0.0002 |
|
390 |
+
| 0.5693 | 8200 | 0.0002 |
|
391 |
+
| 0.5763 | 8300 | 0.0002 |
|
392 |
+
| 0.5832 | 8400 | 0.0002 |
|
393 |
+
| 0.5902 | 8500 | 0.0002 |
|
394 |
+
| 0.5971 | 8600 | 0.0002 |
|
395 |
+
| 0.6040 | 8700 | 0.0002 |
|
396 |
+
| 0.6110 | 8800 | 0.0002 |
|
397 |
+
| 0.6179 | 8900 | 0.0002 |
|
398 |
+
| 0.6249 | 9000 | 0.0002 |
|
399 |
+
| 0.6318 | 9100 | 0.0002 |
|
400 |
+
| 0.6388 | 9200 | 0.0002 |
|
401 |
+
| 0.6457 | 9300 | 0.0002 |
|
402 |
+
| 0.6526 | 9400 | 0.0002 |
|
403 |
+
| 0.6596 | 9500 | 0.0002 |
|
404 |
+
| 0.6665 | 9600 | 0.0002 |
|
405 |
+
| 0.6735 | 9700 | 0.0002 |
|
406 |
+
| 0.6804 | 9800 | 0.0002 |
|
407 |
+
| 0.6874 | 9900 | 0.0002 |
|
408 |
+
| 0.6943 | 10000 | 0.0002 |
|
409 |
+
| 0.7012 | 10100 | 0.0002 |
|
410 |
+
| 0.7082 | 10200 | 0.0002 |
|
411 |
+
| 0.7151 | 10300 | 0.0002 |
|
412 |
+
| 0.7221 | 10400 | 0.0002 |
|
413 |
+
| 0.7290 | 10500 | 0.0002 |
|
414 |
+
| 0.7360 | 10600 | 0.0002 |
|
415 |
+
| 0.7429 | 10700 | 0.0002 |
|
416 |
+
| 0.7498 | 10800 | 0.0002 |
|
417 |
+
| 0.7568 | 10900 | 0.0002 |
|
418 |
+
| 0.7637 | 11000 | 0.0002 |
|
419 |
+
| 0.7707 | 11100 | 0.0002 |
|
420 |
+
| 0.7776 | 11200 | 0.0002 |
|
421 |
+
| 0.7846 | 11300 | 0.0002 |
|
422 |
+
| 0.7915 | 11400 | 0.0002 |
|
423 |
+
| 0.7984 | 11500 | 0.0002 |
|
424 |
+
| 0.8054 | 11600 | 0.0002 |
|
425 |
+
| 0.8123 | 11700 | 0.0002 |
|
426 |
+
| 0.8193 | 11800 | 0.0002 |
|
427 |
+
| 0.8262 | 11900 | 0.0002 |
|
428 |
+
| 0.8332 | 12000 | 0.0002 |
|
429 |
+
| 0.8401 | 12100 | 0.0002 |
|
430 |
+
| 0.8470 | 12200 | 0.0002 |
|
431 |
+
| 0.8540 | 12300 | 0.0002 |
|
432 |
+
| 0.8609 | 12400 | 0.0002 |
|
433 |
+
| 0.8679 | 12500 | 0.0002 |
|
434 |
+
| 0.8748 | 12600 | 0.0002 |
|
435 |
+
| 0.8818 | 12700 | 0.0002 |
|
436 |
+
| 0.8887 | 12800 | 0.0002 |
|
437 |
+
| 0.8956 | 12900 | 0.0002 |
|
438 |
+
| 0.9026 | 13000 | 0.0002 |
|
439 |
+
| 0.9095 | 13100 | 0.0002 |
|
440 |
+
| 0.9165 | 13200 | 0.0002 |
|
441 |
+
| 0.9234 | 13300 | 0.0002 |
|
442 |
+
| 0.9304 | 13400 | 0.0002 |
|
443 |
+
| 0.9373 | 13500 | 0.0002 |
|
444 |
+
| 0.9442 | 13600 | 0.0002 |
|
445 |
+
| 0.9512 | 13700 | 0.0002 |
|
446 |
+
| 0.9581 | 13800 | 0.0002 |
|
447 |
+
| 0.9651 | 13900 | 0.0002 |
|
448 |
+
| 0.9720 | 14000 | 0.0002 |
|
449 |
+
| 0.9790 | 14100 | 0.0002 |
|
450 |
+
| 0.9859 | 14200 | 0.0002 |
|
451 |
+
| 0.9928 | 14300 | 0.0002 |
|
452 |
+
| 0.9998 | 14400 | 0.0002 |
|
453 |
+
|
454 |
+
</details>
|
455 |
+
|
456 |
+
### Framework Versions
|
457 |
+
- Python: 3.10.12
|
458 |
+
- Sentence Transformers: 3.3.1
|
459 |
+
- Transformers: 4.47.0
|
460 |
+
- PyTorch: 2.5.1+cu121
|
461 |
+
- Accelerate: 1.2.1
|
462 |
+
- Datasets: 3.2.0
|
463 |
+
- Tokenizers: 0.21.0
|
464 |
+
|
465 |
+
## Citation
|
466 |
+
|
467 |
+
### BibTeX
|
468 |
+
|
469 |
+
#### Sentence Transformers
|
470 |
+
```bibtex
|
471 |
+
@inproceedings{reimers-2019-sentence-bert,
|
472 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
473 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
474 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
475 |
+
month = "11",
|
476 |
+
year = "2019",
|
477 |
+
publisher = "Association for Computational Linguistics",
|
478 |
+
url = "https://arxiv.org/abs/1908.10084",
|
479 |
+
}
|
480 |
+
```
|
481 |
+
|
482 |
+
<!--
|
483 |
+
## Glossary
|
484 |
+
|
485 |
+
*Clearly define terms in order to be accessible across audiences.*
|
486 |
+
-->
|
487 |
+
|
488 |
+
<!--
|
489 |
+
## Model Card Authors
|
490 |
+
|
491 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
492 |
+
-->
|
493 |
+
|
494 |
+
<!--
|
495 |
+
## Model Card Contact
|
496 |
+
|
497 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
498 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.0",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Normalize",
|
24 |
+
"type": "sentence_transformers.models.Normalize"
|
25 |
+
}
|
26 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|