codersan commited on
Commit
e759180
·
verified ·
1 Parent(s): e99ffd5

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:758b5aea27f6d4ea5f6af80838a59727d8b960a4625a6f1cd4d894a52854020c
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:172826
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/LaBSE
10
+ widget:
11
+ - source_sentence: How do you make Yahoo your homepage?
12
+ sentences:
13
+ - چگونه ویکی پدیا بدون تبلیغ در وب سایت خود درآمد کسب می کند؟
14
+ - چگونه می توانم برای امتحان INS 21 آماده شوم؟
15
+ - How can I make Yahoo my homepage on my browser?
16
+ - source_sentence: کدام VPN رایگان در چین کار می کند؟
17
+ sentences:
18
+ - VPN های رایگان که در چین کار می کنند چیست؟
19
+ - How can I stop masturbations?
20
+ - آیا مدرسه خلاقیت را می کشد؟
21
+ - source_sentence: چند روش خوب برای کاهش وزن چیست؟
22
+ sentences:
23
+ - چگونه می توانم یک کتاب خوب بنویسم؟
24
+ - من اضافه وزن دارمچگونه می توانم وزن کم کنم؟
25
+ - آیا می توانید ببینید چه کسی داستانهای اینستاگرام شما را مشاهده می کند؟
26
+ - source_sentence: چگونه می توان یک Dell Inspiron 1525 را به تنظیمات کارخانه بازگرداند؟
27
+ sentences:
28
+ - چگونه می توان یک Dell Inspiron B130 را به تنظیمات کارخانه بازگرداند؟
29
+ - مبدل چیست؟
30
+ - چگونه زندگی شما بعد از تشخیص HIV مثبت تغییر کرد؟
31
+ - source_sentence: داشتن هزاران دنبال کننده در Quora چگونه است؟
32
+ sentences:
33
+ - چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟
34
+ - چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟
35
+ - اگر هند واردات همه محصولات چینی را ممنوع کند ، چه می شود؟
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/LaBSE
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
49
+ - **Maximum Sequence Length:** 256 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
69
+ (3): Normalize()
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("codersan/validadted_faLabse_withCosSim")
89
+ # Run inference
90
+ sentences = [
91
+ 'داشتن هزاران دنبال کننده در Quora چگونه است؟',
92
+ 'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
93
+ 'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 768]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 172,826 training samples
149
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | sentence1 | sentence2 | score |
152
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
153
+ | type | string | string | float |
154
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.2 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.47 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.76</li><li>mean: 0.95</li><li>max: 1.0</li></ul> |
155
+ * Samples:
156
+ | sentence1 | sentence2 | score |
157
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------|
158
+ | <code>تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟</code> | <code>تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟</code> | <code>0.982593297958374</code> |
159
+ | <code>خوردن چه چیزی باعث دل درد میشود؟</code> | <code>چه چیزی باعث رفع دل درد میشود؟</code> | <code>0.9582258462905884</code> |
160
+ | <code>بهترین نرم افزار ویرایش ویدیویی کدام است؟</code> | <code>بهترین نرم افزار برای ویرایش ویدیو چیست؟</code> | <code>0.9890836477279663</code> |
161
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
162
+ ```json
163
+ {
164
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
165
+ }
166
+ ```
167
+
168
+ ### Training Hyperparameters
169
+ #### Non-Default Hyperparameters
170
+
171
+ - `eval_strategy`: steps
172
+ - `per_device_train_batch_size`: 12
173
+ - `learning_rate`: 5e-06
174
+ - `weight_decay`: 0.01
175
+ - `num_train_epochs`: 1
176
+ - `warmup_ratio`: 0.1
177
+ - `push_to_hub`: True
178
+ - `hub_model_id`: codersan/validadted_faLabse_withCosSim
179
+ - `eval_on_start`: True
180
+ - `batch_sampler`: no_duplicates
181
+
182
+ #### All Hyperparameters
183
+ <details><summary>Click to expand</summary>
184
+
185
+ - `overwrite_output_dir`: False
186
+ - `do_predict`: False
187
+ - `eval_strategy`: steps
188
+ - `prediction_loss_only`: True
189
+ - `per_device_train_batch_size`: 12
190
+ - `per_device_eval_batch_size`: 8
191
+ - `per_gpu_train_batch_size`: None
192
+ - `per_gpu_eval_batch_size`: None
193
+ - `gradient_accumulation_steps`: 1
194
+ - `eval_accumulation_steps`: None
195
+ - `torch_empty_cache_steps`: None
196
+ - `learning_rate`: 5e-06
197
+ - `weight_decay`: 0.01
198
+ - `adam_beta1`: 0.9
199
+ - `adam_beta2`: 0.999
200
+ - `adam_epsilon`: 1e-08
201
+ - `max_grad_norm`: 1
202
+ - `num_train_epochs`: 1
203
+ - `max_steps`: -1
204
+ - `lr_scheduler_type`: linear
205
+ - `lr_scheduler_kwargs`: {}
206
+ - `warmup_ratio`: 0.1
207
+ - `warmup_steps`: 0
208
+ - `log_level`: passive
209
+ - `log_level_replica`: warning
210
+ - `log_on_each_node`: True
211
+ - `logging_nan_inf_filter`: True
212
+ - `save_safetensors`: True
213
+ - `save_on_each_node`: False
214
+ - `save_only_model`: False
215
+ - `restore_callback_states_from_checkpoint`: False
216
+ - `no_cuda`: False
217
+ - `use_cpu`: False
218
+ - `use_mps_device`: False
219
+ - `seed`: 42
220
+ - `data_seed`: None
221
+ - `jit_mode_eval`: False
222
+ - `use_ipex`: False
223
+ - `bf16`: False
224
+ - `fp16`: False
225
+ - `fp16_opt_level`: O1
226
+ - `half_precision_backend`: auto
227
+ - `bf16_full_eval`: False
228
+ - `fp16_full_eval`: False
229
+ - `tf32`: None
230
+ - `local_rank`: 0
231
+ - `ddp_backend`: None
232
+ - `tpu_num_cores`: None
233
+ - `tpu_metrics_debug`: False
234
+ - `debug`: []
235
+ - `dataloader_drop_last`: False
236
+ - `dataloader_num_workers`: 0
237
+ - `dataloader_prefetch_factor`: None
238
+ - `past_index`: -1
239
+ - `disable_tqdm`: False
240
+ - `remove_unused_columns`: True
241
+ - `label_names`: None
242
+ - `load_best_model_at_end`: False
243
+ - `ignore_data_skip`: False
244
+ - `fsdp`: []
245
+ - `fsdp_min_num_params`: 0
246
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
247
+ - `fsdp_transformer_layer_cls_to_wrap`: None
248
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
249
+ - `deepspeed`: None
250
+ - `label_smoothing_factor`: 0.0
251
+ - `optim`: adamw_torch
252
+ - `optim_args`: None
253
+ - `adafactor`: False
254
+ - `group_by_length`: False
255
+ - `length_column_name`: length
256
+ - `ddp_find_unused_parameters`: None
257
+ - `ddp_bucket_cap_mb`: None
258
+ - `ddp_broadcast_buffers`: False
259
+ - `dataloader_pin_memory`: True
260
+ - `dataloader_persistent_workers`: False
261
+ - `skip_memory_metrics`: True
262
+ - `use_legacy_prediction_loop`: False
263
+ - `push_to_hub`: True
264
+ - `resume_from_checkpoint`: None
265
+ - `hub_model_id`: codersan/validadted_faLabse_withCosSim
266
+ - `hub_strategy`: every_save
267
+ - `hub_private_repo`: None
268
+ - `hub_always_push`: False
269
+ - `gradient_checkpointing`: False
270
+ - `gradient_checkpointing_kwargs`: None
271
+ - `include_inputs_for_metrics`: False
272
+ - `include_for_metrics`: []
273
+ - `eval_do_concat_batches`: True
274
+ - `fp16_backend`: auto
275
+ - `push_to_hub_model_id`: None
276
+ - `push_to_hub_organization`: None
277
+ - `mp_parameters`:
278
+ - `auto_find_batch_size`: False
279
+ - `full_determinism`: False
280
+ - `torchdynamo`: None
281
+ - `ray_scope`: last
282
+ - `ddp_timeout`: 1800
283
+ - `torch_compile`: False
284
+ - `torch_compile_backend`: None
285
+ - `torch_compile_mode`: None
286
+ - `dispatch_batches`: None
287
+ - `split_batches`: None
288
+ - `include_tokens_per_second`: False
289
+ - `include_num_input_tokens_seen`: False
290
+ - `neftune_noise_alpha`: None
291
+ - `optim_target_modules`: None
292
+ - `batch_eval_metrics`: False
293
+ - `eval_on_start`: True
294
+ - `use_liger_kernel`: False
295
+ - `eval_use_gather_object`: False
296
+ - `average_tokens_across_devices`: False
297
+ - `prompts`: None
298
+ - `batch_sampler`: no_duplicates
299
+ - `multi_dataset_batch_sampler`: proportional
300
+
301
+ </details>
302
+
303
+ ### Training Logs
304
+ <details><summary>Click to expand</summary>
305
+
306
+ | Epoch | Step | Training Loss |
307
+ |:------:|:-----:|:-------------:|
308
+ | 0 | 0 | - |
309
+ | 0.0069 | 100 | 0.0299 |
310
+ | 0.0139 | 200 | 0.0185 |
311
+ | 0.0208 | 300 | 0.0063 |
312
+ | 0.0278 | 400 | 0.0021 |
313
+ | 0.0347 | 500 | 0.0009 |
314
+ | 0.0417 | 600 | 0.0006 |
315
+ | 0.0486 | 700 | 0.0006 |
316
+ | 0.0555 | 800 | 0.0005 |
317
+ | 0.0625 | 900 | 0.0005 |
318
+ | 0.0694 | 1000 | 0.0005 |
319
+ | 0.0764 | 1100 | 0.0005 |
320
+ | 0.0833 | 1200 | 0.0004 |
321
+ | 0.0903 | 1300 | 0.0004 |
322
+ | 0.0972 | 1400 | 0.0004 |
323
+ | 0.1041 | 1500 | 0.0004 |
324
+ | 0.1111 | 1600 | 0.0004 |
325
+ | 0.1180 | 1700 | 0.0004 |
326
+ | 0.1250 | 1800 | 0.0003 |
327
+ | 0.1319 | 1900 | 0.0003 |
328
+ | 0.1389 | 2000 | 0.0003 |
329
+ | 0.1458 | 2100 | 0.0003 |
330
+ | 0.1527 | 2200 | 0.0003 |
331
+ | 0.1597 | 2300 | 0.0003 |
332
+ | 0.1666 | 2400 | 0.0003 |
333
+ | 0.1736 | 2500 | 0.0003 |
334
+ | 0.1805 | 2600 | 0.0003 |
335
+ | 0.1875 | 2700 | 0.0003 |
336
+ | 0.1944 | 2800 | 0.0003 |
337
+ | 0.2013 | 2900 | 0.0003 |
338
+ | 0.2083 | 3000 | 0.0003 |
339
+ | 0.2152 | 3100 | 0.0003 |
340
+ | 0.2222 | 3200 | 0.0002 |
341
+ | 0.2291 | 3300 | 0.0003 |
342
+ | 0.2361 | 3400 | 0.0003 |
343
+ | 0.2430 | 3500 | 0.0002 |
344
+ | 0.2499 | 3600 | 0.0003 |
345
+ | 0.2569 | 3700 | 0.0003 |
346
+ | 0.2638 | 3800 | 0.0003 |
347
+ | 0.2708 | 3900 | 0.0002 |
348
+ | 0.2777 | 4000 | 0.0003 |
349
+ | 0.2847 | 4100 | 0.0003 |
350
+ | 0.2916 | 4200 | 0.0002 |
351
+ | 0.2985 | 4300 | 0.0002 |
352
+ | 0.3055 | 4400 | 0.0002 |
353
+ | 0.3124 | 4500 | 0.0002 |
354
+ | 0.3194 | 4600 | 0.0002 |
355
+ | 0.3263 | 4700 | 0.0002 |
356
+ | 0.3333 | 4800 | 0.0003 |
357
+ | 0.3402 | 4900 | 0.0002 |
358
+ | 0.3471 | 5000 | 0.0002 |
359
+ | 0.3541 | 5100 | 0.0002 |
360
+ | 0.3610 | 5200 | 0.0002 |
361
+ | 0.3680 | 5300 | 0.0002 |
362
+ | 0.3749 | 5400 | 0.0002 |
363
+ | 0.3819 | 5500 | 0.0002 |
364
+ | 0.3888 | 5600 | 0.0002 |
365
+ | 0.3958 | 5700 | 0.0002 |
366
+ | 0.4027 | 5800 | 0.0002 |
367
+ | 0.4096 | 5900 | 0.0002 |
368
+ | 0.4166 | 6000 | 0.0002 |
369
+ | 0.4235 | 6100 | 0.0002 |
370
+ | 0.4305 | 6200 | 0.0002 |
371
+ | 0.4374 | 6300 | 0.0002 |
372
+ | 0.4444 | 6400 | 0.0002 |
373
+ | 0.4513 | 6500 | 0.0002 |
374
+ | 0.4582 | 6600 | 0.0002 |
375
+ | 0.4652 | 6700 | 0.0002 |
376
+ | 0.4721 | 6800 | 0.0002 |
377
+ | 0.4791 | 6900 | 0.0002 |
378
+ | 0.4860 | 7000 | 0.0002 |
379
+ | 0.4930 | 7100 | 0.0002 |
380
+ | 0.4999 | 7200 | 0.0002 |
381
+ | 0.5068 | 7300 | 0.0002 |
382
+ | 0.5138 | 7400 | 0.0002 |
383
+ | 0.5207 | 7500 | 0.0002 |
384
+ | 0.5277 | 7600 | 0.0002 |
385
+ | 0.5346 | 7700 | 0.0002 |
386
+ | 0.5416 | 7800 | 0.0002 |
387
+ | 0.5485 | 7900 | 0.0002 |
388
+ | 0.5554 | 8000 | 0.0002 |
389
+ | 0.5624 | 8100 | 0.0002 |
390
+ | 0.5693 | 8200 | 0.0002 |
391
+ | 0.5763 | 8300 | 0.0002 |
392
+ | 0.5832 | 8400 | 0.0002 |
393
+ | 0.5902 | 8500 | 0.0002 |
394
+ | 0.5971 | 8600 | 0.0002 |
395
+ | 0.6040 | 8700 | 0.0002 |
396
+ | 0.6110 | 8800 | 0.0002 |
397
+ | 0.6179 | 8900 | 0.0002 |
398
+ | 0.6249 | 9000 | 0.0002 |
399
+ | 0.6318 | 9100 | 0.0002 |
400
+ | 0.6388 | 9200 | 0.0002 |
401
+ | 0.6457 | 9300 | 0.0002 |
402
+ | 0.6526 | 9400 | 0.0002 |
403
+ | 0.6596 | 9500 | 0.0002 |
404
+ | 0.6665 | 9600 | 0.0002 |
405
+ | 0.6735 | 9700 | 0.0002 |
406
+ | 0.6804 | 9800 | 0.0002 |
407
+ | 0.6874 | 9900 | 0.0002 |
408
+ | 0.6943 | 10000 | 0.0002 |
409
+ | 0.7012 | 10100 | 0.0002 |
410
+ | 0.7082 | 10200 | 0.0002 |
411
+ | 0.7151 | 10300 | 0.0002 |
412
+ | 0.7221 | 10400 | 0.0002 |
413
+ | 0.7290 | 10500 | 0.0002 |
414
+ | 0.7360 | 10600 | 0.0002 |
415
+ | 0.7429 | 10700 | 0.0002 |
416
+ | 0.7498 | 10800 | 0.0002 |
417
+ | 0.7568 | 10900 | 0.0002 |
418
+ | 0.7637 | 11000 | 0.0002 |
419
+ | 0.7707 | 11100 | 0.0002 |
420
+ | 0.7776 | 11200 | 0.0002 |
421
+ | 0.7846 | 11300 | 0.0002 |
422
+ | 0.7915 | 11400 | 0.0002 |
423
+ | 0.7984 | 11500 | 0.0002 |
424
+ | 0.8054 | 11600 | 0.0002 |
425
+ | 0.8123 | 11700 | 0.0002 |
426
+ | 0.8193 | 11800 | 0.0002 |
427
+ | 0.8262 | 11900 | 0.0002 |
428
+ | 0.8332 | 12000 | 0.0002 |
429
+ | 0.8401 | 12100 | 0.0002 |
430
+ | 0.8470 | 12200 | 0.0002 |
431
+ | 0.8540 | 12300 | 0.0002 |
432
+ | 0.8609 | 12400 | 0.0002 |
433
+ | 0.8679 | 12500 | 0.0002 |
434
+ | 0.8748 | 12600 | 0.0002 |
435
+ | 0.8818 | 12700 | 0.0002 |
436
+ | 0.8887 | 12800 | 0.0002 |
437
+ | 0.8956 | 12900 | 0.0002 |
438
+ | 0.9026 | 13000 | 0.0002 |
439
+ | 0.9095 | 13100 | 0.0002 |
440
+ | 0.9165 | 13200 | 0.0002 |
441
+ | 0.9234 | 13300 | 0.0002 |
442
+ | 0.9304 | 13400 | 0.0002 |
443
+ | 0.9373 | 13500 | 0.0002 |
444
+ | 0.9442 | 13600 | 0.0002 |
445
+ | 0.9512 | 13700 | 0.0002 |
446
+ | 0.9581 | 13800 | 0.0002 |
447
+ | 0.9651 | 13900 | 0.0002 |
448
+ | 0.9720 | 14000 | 0.0002 |
449
+ | 0.9790 | 14100 | 0.0002 |
450
+ | 0.9859 | 14200 | 0.0002 |
451
+ | 0.9928 | 14300 | 0.0002 |
452
+ | 0.9998 | 14400 | 0.0002 |
453
+
454
+ </details>
455
+
456
+ ### Framework Versions
457
+ - Python: 3.10.12
458
+ - Sentence Transformers: 3.3.1
459
+ - Transformers: 4.47.0
460
+ - PyTorch: 2.5.1+cu121
461
+ - Accelerate: 1.2.1
462
+ - Datasets: 3.2.0
463
+ - Tokenizers: 0.21.0
464
+
465
+ ## Citation
466
+
467
+ ### BibTeX
468
+
469
+ #### Sentence Transformers
470
+ ```bibtex
471
+ @inproceedings{reimers-2019-sentence-bert,
472
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
473
+ author = "Reimers, Nils and Gurevych, Iryna",
474
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
475
+ month = "11",
476
+ year = "2019",
477
+ publisher = "Association for Computational Linguistics",
478
+ url = "https://arxiv.org/abs/1908.10084",
479
+ }
480
+ ```
481
+
482
+ <!--
483
+ ## Glossary
484
+
485
+ *Clearly define terms in order to be accessible across audiences.*
486
+ -->
487
+
488
+ <!--
489
+ ## Model Card Authors
490
+
491
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
492
+ -->
493
+
494
+ <!--
495
+ ## Model Card Contact
496
+
497
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
498
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }