codersan commited on
Commit
1175aef
·
verified ·
1 Parent(s): 5e70cdf

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13fd3dcf128ef15f358306ee7333f2c77a056d9713520a3d203c743fb076bc90
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,1074 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:172826
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/LaBSE
10
+ widget:
11
+ - source_sentence: How do you make Yahoo your homepage?
12
+ sentences:
13
+ - چگونه ویکی پدیا بدون تبلیغ در وب سایت خود درآمد کسب می کند؟
14
+ - چگونه می توانم برای امتحان INS 21 آماده شوم؟
15
+ - How can I make Yahoo my homepage on my browser?
16
+ - source_sentence: کدام VPN رایگان در چین کار می کند؟
17
+ sentences:
18
+ - VPN های رایگان که در چین کار می کنند چیست؟
19
+ - How can I stop masturbations?
20
+ - آیا مدرسه خلاقیت را می کشد؟
21
+ - source_sentence: چند روش خوب برای کاهش وزن چیست؟
22
+ sentences:
23
+ - چگونه می توانم یک کتاب خوب بنویسم؟
24
+ - من اضافه وزن دارمچگونه می توانم وزن کم کنم؟
25
+ - آیا می توانید ببینید چه کسی داستانهای اینستاگرام شما را مشاهده می کند؟
26
+ - source_sentence: چگونه می توان یک Dell Inspiron 1525 را به تنظیمات کارخانه بازگرداند؟
27
+ sentences:
28
+ - چگونه می توان یک Dell Inspiron B130 را به تنظیمات کارخانه بازگرداند؟
29
+ - مبدل چیست؟
30
+ - چگونه زندگی شما بعد از تشخیص HIV مثبت تغییر کرد؟
31
+ - source_sentence: داشتن هزاران دنبال کننده در Quora چگونه است؟
32
+ sentences:
33
+ - چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟
34
+ - چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟
35
+ - اگر هند واردات همه محصولات چینی را ممنوع کند ، چه می شود؟
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/LaBSE
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
49
+ - **Maximum Sequence Length:** 256 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
69
+ (3): Normalize()
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("codersan/validadted_faLabse_withCosSimb")
89
+ # Run inference
90
+ sentences = [
91
+ 'داشتن هزاران دنبال کننده در Quora چگونه است؟',
92
+ 'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
93
+ 'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 768]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 172,826 training samples
149
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | sentence1 | sentence2 | score |
152
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
153
+ | type | string | string | float |
154
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.2 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.47 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.76</li><li>mean: 0.95</li><li>max: 1.0</li></ul> |
155
+ * Samples:
156
+ | sentence1 | sentence2 | score |
157
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------|
158
+ | <code>تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟</code> | <code>تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟</code> | <code>0.982593297958374</code> |
159
+ | <code>خوردن چه چیزی باعث دل درد میشود؟</code> | <code>چه چیزی باعث رفع دل درد میشود؟</code> | <code>0.9582258462905884</code> |
160
+ | <code>بهترین نرم افزار ویرایش ویدیویی کدام است؟</code> | <code>بهترین نرم افزار برای ویرایش ویدیو چیست؟</code> | <code>0.9890836477279663</code> |
161
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
162
+ ```json
163
+ {
164
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
165
+ }
166
+ ```
167
+
168
+ ### Training Hyperparameters
169
+ #### Non-Default Hyperparameters
170
+
171
+ - `eval_strategy`: steps
172
+ - `per_device_train_batch_size`: 12
173
+ - `learning_rate`: 1e-05
174
+ - `weight_decay`: 0.01
175
+ - `num_train_epochs`: 5
176
+ - `warmup_ratio`: 0.1
177
+ - `push_to_hub`: True
178
+ - `hub_model_id`: codersan/validadted_faLabse_withCosSimb
179
+ - `eval_on_start`: True
180
+ - `batch_sampler`: no_duplicates
181
+
182
+ #### All Hyperparameters
183
+ <details><summary>Click to expand</summary>
184
+
185
+ - `overwrite_output_dir`: False
186
+ - `do_predict`: False
187
+ - `eval_strategy`: steps
188
+ - `prediction_loss_only`: True
189
+ - `per_device_train_batch_size`: 12
190
+ - `per_device_eval_batch_size`: 8
191
+ - `per_gpu_train_batch_size`: None
192
+ - `per_gpu_eval_batch_size`: None
193
+ - `gradient_accumulation_steps`: 1
194
+ - `eval_accumulation_steps`: None
195
+ - `torch_empty_cache_steps`: None
196
+ - `learning_rate`: 1e-05
197
+ - `weight_decay`: 0.01
198
+ - `adam_beta1`: 0.9
199
+ - `adam_beta2`: 0.999
200
+ - `adam_epsilon`: 1e-08
201
+ - `max_grad_norm`: 1
202
+ - `num_train_epochs`: 5
203
+ - `max_steps`: -1
204
+ - `lr_scheduler_type`: linear
205
+ - `lr_scheduler_kwargs`: {}
206
+ - `warmup_ratio`: 0.1
207
+ - `warmup_steps`: 0
208
+ - `log_level`: passive
209
+ - `log_level_replica`: warning
210
+ - `log_on_each_node`: True
211
+ - `logging_nan_inf_filter`: True
212
+ - `save_safetensors`: True
213
+ - `save_on_each_node`: False
214
+ - `save_only_model`: False
215
+ - `restore_callback_states_from_checkpoint`: False
216
+ - `no_cuda`: False
217
+ - `use_cpu`: False
218
+ - `use_mps_device`: False
219
+ - `seed`: 42
220
+ - `data_seed`: None
221
+ - `jit_mode_eval`: False
222
+ - `use_ipex`: False
223
+ - `bf16`: False
224
+ - `fp16`: False
225
+ - `fp16_opt_level`: O1
226
+ - `half_precision_backend`: auto
227
+ - `bf16_full_eval`: False
228
+ - `fp16_full_eval`: False
229
+ - `tf32`: None
230
+ - `local_rank`: 0
231
+ - `ddp_backend`: None
232
+ - `tpu_num_cores`: None
233
+ - `tpu_metrics_debug`: False
234
+ - `debug`: []
235
+ - `dataloader_drop_last`: False
236
+ - `dataloader_num_workers`: 0
237
+ - `dataloader_prefetch_factor`: None
238
+ - `past_index`: -1
239
+ - `disable_tqdm`: False
240
+ - `remove_unused_columns`: True
241
+ - `label_names`: None
242
+ - `load_best_model_at_end`: False
243
+ - `ignore_data_skip`: False
244
+ - `fsdp`: []
245
+ - `fsdp_min_num_params`: 0
246
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
247
+ - `fsdp_transformer_layer_cls_to_wrap`: None
248
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
249
+ - `deepspeed`: None
250
+ - `label_smoothing_factor`: 0.0
251
+ - `optim`: adamw_torch
252
+ - `optim_args`: None
253
+ - `adafactor`: False
254
+ - `group_by_length`: False
255
+ - `length_column_name`: length
256
+ - `ddp_find_unused_parameters`: None
257
+ - `ddp_bucket_cap_mb`: None
258
+ - `ddp_broadcast_buffers`: False
259
+ - `dataloader_pin_memory`: True
260
+ - `dataloader_persistent_workers`: False
261
+ - `skip_memory_metrics`: True
262
+ - `use_legacy_prediction_loop`: False
263
+ - `push_to_hub`: True
264
+ - `resume_from_checkpoint`: None
265
+ - `hub_model_id`: codersan/validadted_faLabse_withCosSimb
266
+ - `hub_strategy`: every_save
267
+ - `hub_private_repo`: None
268
+ - `hub_always_push`: False
269
+ - `gradient_checkpointing`: False
270
+ - `gradient_checkpointing_kwargs`: None
271
+ - `include_inputs_for_metrics`: False
272
+ - `include_for_metrics`: []
273
+ - `eval_do_concat_batches`: True
274
+ - `fp16_backend`: auto
275
+ - `push_to_hub_model_id`: None
276
+ - `push_to_hub_organization`: None
277
+ - `mp_parameters`:
278
+ - `auto_find_batch_size`: False
279
+ - `full_determinism`: False
280
+ - `torchdynamo`: None
281
+ - `ray_scope`: last
282
+ - `ddp_timeout`: 1800
283
+ - `torch_compile`: False
284
+ - `torch_compile_backend`: None
285
+ - `torch_compile_mode`: None
286
+ - `dispatch_batches`: None
287
+ - `split_batches`: None
288
+ - `include_tokens_per_second`: False
289
+ - `include_num_input_tokens_seen`: False
290
+ - `neftune_noise_alpha`: None
291
+ - `optim_target_modules`: None
292
+ - `batch_eval_metrics`: False
293
+ - `eval_on_start`: True
294
+ - `use_liger_kernel`: False
295
+ - `eval_use_gather_object`: False
296
+ - `average_tokens_across_devices`: False
297
+ - `prompts`: None
298
+ - `batch_sampler`: no_duplicates
299
+ - `multi_dataset_batch_sampler`: proportional
300
+
301
+ </details>
302
+
303
+ ### Training Logs
304
+ <details><summary>Click to expand</summary>
305
+
306
+ | Epoch | Step | Training Loss |
307
+ |:------:|:-----:|:-------------:|
308
+ | 0 | 0 | - |
309
+ | 0.0069 | 100 | 0.0313 |
310
+ | 0.0139 | 200 | 0.0264 |
311
+ | 0.0208 | 300 | 0.0163 |
312
+ | 0.0278 | 400 | 0.0092 |
313
+ | 0.0347 | 500 | 0.0044 |
314
+ | 0.0417 | 600 | 0.0018 |
315
+ | 0.0486 | 700 | 0.0011 |
316
+ | 0.0555 | 800 | 0.0007 |
317
+ | 0.0625 | 900 | 0.0006 |
318
+ | 0.0694 | 1000 | 0.0006 |
319
+ | 0.0764 | 1100 | 0.0006 |
320
+ | 0.0833 | 1200 | 0.0005 |
321
+ | 0.0903 | 1300 | 0.0005 |
322
+ | 0.0972 | 1400 | 0.0005 |
323
+ | 0.1041 | 1500 | 0.0005 |
324
+ | 0.1111 | 1600 | 0.0005 |
325
+ | 0.1180 | 1700 | 0.0004 |
326
+ | 0.1250 | 1800 | 0.0004 |
327
+ | 0.1319 | 1900 | 0.0004 |
328
+ | 0.1389 | 2000 | 0.0004 |
329
+ | 0.1458 | 2100 | 0.0004 |
330
+ | 0.1527 | 2200 | 0.0004 |
331
+ | 0.1597 | 2300 | 0.0004 |
332
+ | 0.1666 | 2400 | 0.0004 |
333
+ | 0.1736 | 2500 | 0.0003 |
334
+ | 0.1805 | 2600 | 0.0004 |
335
+ | 0.1875 | 2700 | 0.0003 |
336
+ | 0.1944 | 2800 | 0.0003 |
337
+ | 0.2013 | 2900 | 0.0003 |
338
+ | 0.2083 | 3000 | 0.0003 |
339
+ | 0.2152 | 3100 | 0.0003 |
340
+ | 0.2222 | 3200 | 0.0003 |
341
+ | 0.2291 | 3300 | 0.0003 |
342
+ | 0.2361 | 3400 | 0.0003 |
343
+ | 0.2430 | 3500 | 0.0003 |
344
+ | 0.2499 | 3600 | 0.0003 |
345
+ | 0.2569 | 3700 | 0.0003 |
346
+ | 0.2638 | 3800 | 0.0003 |
347
+ | 0.2708 | 3900 | 0.0003 |
348
+ | 0.2777 | 4000 | 0.0003 |
349
+ | 0.2847 | 4100 | 0.0003 |
350
+ | 0.2916 | 4200 | 0.0003 |
351
+ | 0.2985 | 4300 | 0.0003 |
352
+ | 0.3055 | 4400 | 0.0003 |
353
+ | 0.3124 | 4500 | 0.0002 |
354
+ | 0.3194 | 4600 | 0.0002 |
355
+ | 0.3263 | 4700 | 0.0002 |
356
+ | 0.3333 | 4800 | 0.0003 |
357
+ | 0.3402 | 4900 | 0.0002 |
358
+ | 0.3471 | 5000 | 0.0002 |
359
+ | 0.3541 | 5100 | 0.0002 |
360
+ | 0.3610 | 5200 | 0.0002 |
361
+ | 0.3680 | 5300 | 0.0002 |
362
+ | 0.3749 | 5400 | 0.0002 |
363
+ | 0.3819 | 5500 | 0.0002 |
364
+ | 0.3888 | 5600 | 0.0002 |
365
+ | 0.3958 | 5700 | 0.0002 |
366
+ | 0.4027 | 5800 | 0.0002 |
367
+ | 0.4096 | 5900 | 0.0002 |
368
+ | 0.4166 | 6000 | 0.0002 |
369
+ | 0.4235 | 6100 | 0.0002 |
370
+ | 0.4305 | 6200 | 0.0002 |
371
+ | 0.4374 | 6300 | 0.0002 |
372
+ | 0.4444 | 6400 | 0.0002 |
373
+ | 0.4513 | 6500 | 0.0002 |
374
+ | 0.4582 | 6600 | 0.0002 |
375
+ | 0.4652 | 6700 | 0.0002 |
376
+ | 0.4721 | 6800 | 0.0002 |
377
+ | 0.4791 | 6900 | 0.0002 |
378
+ | 0.4860 | 7000 | 0.0002 |
379
+ | 0.4930 | 7100 | 0.0002 |
380
+ | 0.4999 | 7200 | 0.0002 |
381
+ | 0.5068 | 7300 | 0.0002 |
382
+ | 0.5138 | 7400 | 0.0002 |
383
+ | 0.5207 | 7500 | 0.0002 |
384
+ | 0.5277 | 7600 | 0.0002 |
385
+ | 0.5346 | 7700 | 0.0002 |
386
+ | 0.5416 | 7800 | 0.0002 |
387
+ | 0.5485 | 7900 | 0.0002 |
388
+ | 0.5554 | 8000 | 0.0002 |
389
+ | 0.5624 | 8100 | 0.0002 |
390
+ | 0.5693 | 8200 | 0.0002 |
391
+ | 0.5763 | 8300 | 0.0002 |
392
+ | 0.5832 | 8400 | 0.0002 |
393
+ | 0.5902 | 8500 | 0.0002 |
394
+ | 0.5971 | 8600 | 0.0002 |
395
+ | 0.6040 | 8700 | 0.0002 |
396
+ | 0.6110 | 8800 | 0.0002 |
397
+ | 0.6179 | 8900 | 0.0002 |
398
+ | 0.6249 | 9000 | 0.0002 |
399
+ | 0.6318 | 9100 | 0.0002 |
400
+ | 0.6388 | 9200 | 0.0002 |
401
+ | 0.6457 | 9300 | 0.0002 |
402
+ | 0.6526 | 9400 | 0.0002 |
403
+ | 0.6596 | 9500 | 0.0002 |
404
+ | 0.6665 | 9600 | 0.0002 |
405
+ | 0.6735 | 9700 | 0.0002 |
406
+ | 0.6804 | 9800 | 0.0002 |
407
+ | 0.6874 | 9900 | 0.0002 |
408
+ | 0.6943 | 10000 | 0.0002 |
409
+ | 0.7012 | 10100 | 0.0002 |
410
+ | 0.7082 | 10200 | 0.0002 |
411
+ | 0.7151 | 10300 | 0.0002 |
412
+ | 0.7221 | 10400 | 0.0002 |
413
+ | 0.7290 | 10500 | 0.0002 |
414
+ | 0.7360 | 10600 | 0.0002 |
415
+ | 0.7429 | 10700 | 0.0002 |
416
+ | 0.7498 | 10800 | 0.0002 |
417
+ | 0.7568 | 10900 | 0.0002 |
418
+ | 0.7637 | 11000 | 0.0002 |
419
+ | 0.7707 | 11100 | 0.0002 |
420
+ | 0.7776 | 11200 | 0.0002 |
421
+ | 0.7846 | 11300 | 0.0002 |
422
+ | 0.7915 | 11400 | 0.0002 |
423
+ | 0.7984 | 11500 | 0.0002 |
424
+ | 0.8054 | 11600 | 0.0002 |
425
+ | 0.8123 | 11700 | 0.0002 |
426
+ | 0.8193 | 11800 | 0.0002 |
427
+ | 0.8262 | 11900 | 0.0002 |
428
+ | 0.8332 | 12000 | 0.0002 |
429
+ | 0.8401 | 12100 | 0.0002 |
430
+ | 0.8470 | 12200 | 0.0002 |
431
+ | 0.8540 | 12300 | 0.0002 |
432
+ | 0.8609 | 12400 | 0.0002 |
433
+ | 0.8679 | 12500 | 0.0002 |
434
+ | 0.8748 | 12600 | 0.0002 |
435
+ | 0.8818 | 12700 | 0.0001 |
436
+ | 0.8887 | 12800 | 0.0002 |
437
+ | 0.8956 | 12900 | 0.0002 |
438
+ | 0.9026 | 13000 | 0.0002 |
439
+ | 0.9095 | 13100 | 0.0001 |
440
+ | 0.9165 | 13200 | 0.0002 |
441
+ | 0.9234 | 13300 | 0.0002 |
442
+ | 0.9304 | 13400 | 0.0002 |
443
+ | 0.9373 | 13500 | 0.0001 |
444
+ | 0.9442 | 13600 | 0.0002 |
445
+ | 0.9512 | 13700 | 0.0002 |
446
+ | 0.9581 | 13800 | 0.0001 |
447
+ | 0.9651 | 13900 | 0.0001 |
448
+ | 0.9720 | 14000 | 0.0002 |
449
+ | 0.9790 | 14100 | 0.0002 |
450
+ | 0.9859 | 14200 | 0.0001 |
451
+ | 0.9928 | 14300 | 0.0001 |
452
+ | 0.9998 | 14400 | 0.0001 |
453
+ | 1.0067 | 14500 | 0.0001 |
454
+ | 1.0137 | 14600 | 0.0001 |
455
+ | 1.0206 | 14700 | 0.0001 |
456
+ | 1.0276 | 14800 | 0.0002 |
457
+ | 1.0345 | 14900 | 0.0001 |
458
+ | 1.0414 | 15000 | 0.0002 |
459
+ | 1.0484 | 15100 | 0.0002 |
460
+ | 1.0553 | 15200 | 0.0001 |
461
+ | 1.0623 | 15300 | 0.0002 |
462
+ | 1.0692 | 15400 | 0.0001 |
463
+ | 1.0762 | 15500 | 0.0001 |
464
+ | 1.0831 | 15600 | 0.0001 |
465
+ | 1.0901 | 15700 | 0.0001 |
466
+ | 1.0970 | 15800 | 0.0001 |
467
+ | 1.1039 | 15900 | 0.0001 |
468
+ | 1.1109 | 16000 | 0.0001 |
469
+ | 1.1178 | 16100 | 0.0002 |
470
+ | 1.1248 | 16200 | 0.0001 |
471
+ | 1.1317 | 16300 | 0.0002 |
472
+ | 1.1387 | 16400 | 0.0001 |
473
+ | 1.1456 | 16500 | 0.0001 |
474
+ | 1.1525 | 16600 | 0.0001 |
475
+ | 1.1595 | 16700 | 0.0001 |
476
+ | 1.1664 | 16800 | 0.0001 |
477
+ | 1.1734 | 16900 | 0.0001 |
478
+ | 1.1803 | 17000 | 0.0002 |
479
+ | 1.1873 | 17100 | 0.0001 |
480
+ | 1.1942 | 17200 | 0.0001 |
481
+ | 1.2011 | 17300 | 0.0001 |
482
+ | 1.2081 | 17400 | 0.0001 |
483
+ | 1.2150 | 17500 | 0.0001 |
484
+ | 1.2220 | 17600 | 0.0001 |
485
+ | 1.2289 | 17700 | 0.0001 |
486
+ | 1.2359 | 17800 | 0.0001 |
487
+ | 1.2428 | 17900 | 0.0001 |
488
+ | 1.2497 | 18000 | 0.0001 |
489
+ | 1.2567 | 18100 | 0.0001 |
490
+ | 1.2636 | 18200 | 0.0001 |
491
+ | 1.2706 | 18300 | 0.0001 |
492
+ | 1.2775 | 18400 | 0.0001 |
493
+ | 1.2845 | 18500 | 0.0001 |
494
+ | 1.2914 | 18600 | 0.0001 |
495
+ | 1.2983 | 18700 | 0.0001 |
496
+ | 1.3053 | 18800 | 0.0001 |
497
+ | 1.3122 | 18900 | 0.0001 |
498
+ | 1.3192 | 19000 | 0.0001 |
499
+ | 1.3261 | 19100 | 0.0001 |
500
+ | 1.3331 | 19200 | 0.0001 |
501
+ | 1.3400 | 19300 | 0.0001 |
502
+ | 1.3469 | 19400 | 0.0001 |
503
+ | 1.3539 | 19500 | 0.0001 |
504
+ | 1.3608 | 19600 | 0.0001 |
505
+ | 1.3678 | 19700 | 0.0001 |
506
+ | 1.3747 | 19800 | 0.0001 |
507
+ | 1.3817 | 19900 | 0.0001 |
508
+ | 1.3886 | 20000 | 0.0001 |
509
+ | 1.3955 | 20100 | 0.0001 |
510
+ | 1.4025 | 20200 | 0.0001 |
511
+ | 1.4094 | 20300 | 0.0001 |
512
+ | 1.4164 | 20400 | 0.0001 |
513
+ | 1.4233 | 20500 | 0.0001 |
514
+ | 1.4303 | 20600 | 0.0001 |
515
+ | 1.4372 | 20700 | 0.0001 |
516
+ | 1.4441 | 20800 | 0.0001 |
517
+ | 1.4511 | 20900 | 0.0001 |
518
+ | 1.4580 | 21000 | 0.0001 |
519
+ | 1.4650 | 21100 | 0.0001 |
520
+ | 1.4719 | 21200 | 0.0001 |
521
+ | 1.4789 | 21300 | 0.0001 |
522
+ | 1.4858 | 21400 | 0.0001 |
523
+ | 1.4927 | 21500 | 0.0001 |
524
+ | 1.4997 | 21600 | 0.0001 |
525
+ | 1.5066 | 21700 | 0.0001 |
526
+ | 1.5136 | 21800 | 0.0001 |
527
+ | 1.5205 | 21900 | 0.0001 |
528
+ | 1.5275 | 22000 | 0.0001 |
529
+ | 1.5344 | 22100 | 0.0001 |
530
+ | 1.5413 | 22200 | 0.0001 |
531
+ | 1.5483 | 22300 | 0.0001 |
532
+ | 1.5552 | 22400 | 0.0001 |
533
+ | 1.5622 | 22500 | 0.0001 |
534
+ | 1.5691 | 22600 | 0.0001 |
535
+ | 1.5761 | 22700 | 0.0001 |
536
+ | 1.5830 | 22800 | 0.0001 |
537
+ | 1.5899 | 22900 | 0.0001 |
538
+ | 1.5969 | 23000 | 0.0001 |
539
+ | 1.6038 | 23100 | 0.0001 |
540
+ | 1.6108 | 23200 | 0.0001 |
541
+ | 1.6177 | 23300 | 0.0001 |
542
+ | 1.6247 | 23400 | 0.0001 |
543
+ | 1.6316 | 23500 | 0.0001 |
544
+ | 1.6385 | 23600 | 0.0001 |
545
+ | 1.6455 | 23700 | 0.0001 |
546
+ | 1.6524 | 23800 | 0.0001 |
547
+ | 1.6594 | 23900 | 0.0001 |
548
+ | 1.6663 | 24000 | 0.0001 |
549
+ | 1.6733 | 24100 | 0.0001 |
550
+ | 1.6802 | 24200 | 0.0001 |
551
+ | 1.6871 | 24300 | 0.0001 |
552
+ | 1.6941 | 24400 | 0.0001 |
553
+ | 1.7010 | 24500 | 0.0001 |
554
+ | 1.7080 | 24600 | 0.0001 |
555
+ | 1.7149 | 24700 | 0.0001 |
556
+ | 1.7219 | 24800 | 0.0001 |
557
+ | 1.7288 | 24900 | 0.0001 |
558
+ | 1.7357 | 25000 | 0.0001 |
559
+ | 1.7427 | 25100 | 0.0001 |
560
+ | 1.7496 | 25200 | 0.0001 |
561
+ | 1.7566 | 25300 | 0.0001 |
562
+ | 1.7635 | 25400 | 0.0001 |
563
+ | 1.7705 | 25500 | 0.0001 |
564
+ | 1.7774 | 25600 | 0.0001 |
565
+ | 1.7844 | 25700 | 0.0001 |
566
+ | 1.7913 | 25800 | 0.0001 |
567
+ | 1.7982 | 25900 | 0.0001 |
568
+ | 1.8052 | 26000 | 0.0001 |
569
+ | 1.8121 | 26100 | 0.0001 |
570
+ | 1.8191 | 26200 | 0.0001 |
571
+ | 1.8260 | 26300 | 0.0001 |
572
+ | 1.8330 | 26400 | 0.0001 |
573
+ | 1.8399 | 26500 | 0.0001 |
574
+ | 1.8468 | 26600 | 0.0001 |
575
+ | 1.8538 | 26700 | 0.0001 |
576
+ | 1.8607 | 26800 | 0.0001 |
577
+ | 1.8677 | 26900 | 0.0001 |
578
+ | 1.8746 | 27000 | 0.0001 |
579
+ | 1.8816 | 27100 | 0.0001 |
580
+ | 1.8885 | 27200 | 0.0001 |
581
+ | 1.8954 | 27300 | 0.0001 |
582
+ | 1.9024 | 27400 | 0.0001 |
583
+ | 1.9093 | 27500 | 0.0001 |
584
+ | 1.9163 | 27600 | 0.0001 |
585
+ | 1.9232 | 27700 | 0.0001 |
586
+ | 1.9302 | 27800 | 0.0001 |
587
+ | 1.9371 | 27900 | 0.0001 |
588
+ | 1.9440 | 28000 | 0.0001 |
589
+ | 1.9510 | 28100 | 0.0001 |
590
+ | 1.9579 | 28200 | 0.0001 |
591
+ | 1.9649 | 28300 | 0.0001 |
592
+ | 1.9718 | 28400 | 0.0001 |
593
+ | 1.9788 | 28500 | 0.0001 |
594
+ | 1.9857 | 28600 | 0.0001 |
595
+ | 1.9926 | 28700 | 0.0001 |
596
+ | 1.9996 | 28800 | 0.0001 |
597
+ | 2.0065 | 28900 | 0.0001 |
598
+ | 2.0135 | 29000 | 0.0001 |
599
+ | 2.0204 | 29100 | 0.0001 |
600
+ | 2.0274 | 29200 | 0.0001 |
601
+ | 2.0343 | 29300 | 0.0001 |
602
+ | 2.0412 | 29400 | 0.0001 |
603
+ | 2.0482 | 29500 | 0.0001 |
604
+ | 2.0551 | 29600 | 0.0001 |
605
+ | 2.0621 | 29700 | 0.0001 |
606
+ | 2.0690 | 29800 | 0.0001 |
607
+ | 2.0760 | 29900 | 0.0001 |
608
+ | 2.0829 | 30000 | 0.0001 |
609
+ | 2.0898 | 30100 | 0.0001 |
610
+ | 2.0968 | 30200 | 0.0001 |
611
+ | 2.1037 | 30300 | 0.0001 |
612
+ | 2.1107 | 30400 | 0.0001 |
613
+ | 2.1176 | 30500 | 0.0001 |
614
+ | 2.1246 | 30600 | 0.0001 |
615
+ | 2.1315 | 30700 | 0.0001 |
616
+ | 2.1384 | 30800 | 0.0001 |
617
+ | 2.1454 | 30900 | 0.0001 |
618
+ | 2.1523 | 31000 | 0.0001 |
619
+ | 2.1593 | 31100 | 0.0001 |
620
+ | 2.1662 | 31200 | 0.0001 |
621
+ | 2.1732 | 31300 | 0.0001 |
622
+ | 2.1801 | 31400 | 0.0001 |
623
+ | 2.1870 | 31500 | 0.0001 |
624
+ | 2.1940 | 31600 | 0.0001 |
625
+ | 2.2009 | 31700 | 0.0001 |
626
+ | 2.2079 | 31800 | 0.0001 |
627
+ | 2.2148 | 31900 | 0.0001 |
628
+ | 2.2218 | 32000 | 0.0001 |
629
+ | 2.2287 | 32100 | 0.0001 |
630
+ | 2.2356 | 32200 | 0.0001 |
631
+ | 2.2426 | 32300 | 0.0001 |
632
+ | 2.2495 | 32400 | 0.0001 |
633
+ | 2.2565 | 32500 | 0.0001 |
634
+ | 2.2634 | 32600 | 0.0001 |
635
+ | 2.2704 | 32700 | 0.0001 |
636
+ | 2.2773 | 32800 | 0.0001 |
637
+ | 2.2842 | 32900 | 0.0001 |
638
+ | 2.2912 | 33000 | 0.0001 |
639
+ | 2.2981 | 33100 | 0.0001 |
640
+ | 2.3051 | 33200 | 0.0001 |
641
+ | 2.3120 | 33300 | 0.0001 |
642
+ | 2.3190 | 33400 | 0.0001 |
643
+ | 2.3259 | 33500 | 0.0001 |
644
+ | 2.3328 | 33600 | 0.0001 |
645
+ | 2.3398 | 33700 | 0.0001 |
646
+ | 2.3467 | 33800 | 0.0001 |
647
+ | 2.3537 | 33900 | 0.0001 |
648
+ | 2.3606 | 34000 | 0.0001 |
649
+ | 2.3676 | 34100 | 0.0001 |
650
+ | 2.3745 | 34200 | 0.0001 |
651
+ | 2.3814 | 34300 | 0.0001 |
652
+ | 2.3884 | 34400 | 0.0001 |
653
+ | 2.3953 | 34500 | 0.0001 |
654
+ | 2.4023 | 34600 | 0.0001 |
655
+ | 2.4092 | 34700 | 0.0001 |
656
+ | 2.4162 | 34800 | 0.0001 |
657
+ | 2.4231 | 34900 | 0.0001 |
658
+ | 2.4300 | 35000 | 0.0001 |
659
+ | 2.4370 | 35100 | 0.0001 |
660
+ | 2.4439 | 35200 | 0.0001 |
661
+ | 2.4509 | 35300 | 0.0001 |
662
+ | 2.4578 | 35400 | 0.0001 |
663
+ | 2.4648 | 35500 | 0.0001 |
664
+ | 2.4717 | 35600 | 0.0001 |
665
+ | 2.4787 | 35700 | 0.0001 |
666
+ | 2.4856 | 35800 | 0.0001 |
667
+ | 2.4925 | 35900 | 0.0001 |
668
+ | 2.4995 | 36000 | 0.0001 |
669
+ | 2.5064 | 36100 | 0.0001 |
670
+ | 2.5134 | 36200 | 0.0001 |
671
+ | 2.5203 | 36300 | 0.0001 |
672
+ | 2.5273 | 36400 | 0.0001 |
673
+ | 2.5342 | 36500 | 0.0001 |
674
+ | 2.5411 | 36600 | 0.0001 |
675
+ | 2.5481 | 36700 | 0.0001 |
676
+ | 2.5550 | 36800 | 0.0001 |
677
+ | 2.5620 | 36900 | 0.0001 |
678
+ | 2.5689 | 37000 | 0.0001 |
679
+ | 2.5759 | 37100 | 0.0001 |
680
+ | 2.5828 | 37200 | 0.0001 |
681
+ | 2.5897 | 37300 | 0.0001 |
682
+ | 2.5967 | 37400 | 0.0001 |
683
+ | 2.6036 | 37500 | 0.0001 |
684
+ | 2.6106 | 37600 | 0.0001 |
685
+ | 2.6175 | 37700 | 0.0001 |
686
+ | 2.6245 | 37800 | 0.0001 |
687
+ | 2.6314 | 37900 | 0.0001 |
688
+ | 2.6383 | 38000 | 0.0001 |
689
+ | 2.6453 | 38100 | 0.0001 |
690
+ | 2.6522 | 38200 | 0.0001 |
691
+ | 2.6592 | 38300 | 0.0001 |
692
+ | 2.6661 | 38400 | 0.0001 |
693
+ | 2.6731 | 38500 | 0.0001 |
694
+ | 2.6800 | 38600 | 0.0001 |
695
+ | 2.6869 | 38700 | 0.0001 |
696
+ | 2.6939 | 38800 | 0.0001 |
697
+ | 2.7008 | 38900 | 0.0001 |
698
+ | 2.7078 | 39000 | 0.0001 |
699
+ | 2.7147 | 39100 | 0.0001 |
700
+ | 2.7217 | 39200 | 0.0001 |
701
+ | 2.7286 | 39300 | 0.0001 |
702
+ | 2.7355 | 39400 | 0.0001 |
703
+ | 2.7425 | 39500 | 0.0001 |
704
+ | 2.7494 | 39600 | 0.0001 |
705
+ | 2.7564 | 39700 | 0.0001 |
706
+ | 2.7633 | 39800 | 0.0001 |
707
+ | 2.7703 | 39900 | 0.0001 |
708
+ | 2.7772 | 40000 | 0.0001 |
709
+ | 2.7841 | 40100 | 0.0001 |
710
+ | 2.7911 | 40200 | 0.0001 |
711
+ | 2.7980 | 40300 | 0.0001 |
712
+ | 2.8050 | 40400 | 0.0001 |
713
+ | 2.8119 | 40500 | 0.0001 |
714
+ | 2.8189 | 40600 | 0.0001 |
715
+ | 2.8258 | 40700 | 0.0001 |
716
+ | 2.8327 | 40800 | 0.0001 |
717
+ | 2.8397 | 40900 | 0.0001 |
718
+ | 2.8466 | 41000 | 0.0001 |
719
+ | 2.8536 | 41100 | 0.0001 |
720
+ | 2.8605 | 41200 | 0.0001 |
721
+ | 2.8675 | 41300 | 0.0001 |
722
+ | 2.8744 | 41400 | 0.0001 |
723
+ | 2.8813 | 41500 | 0.0001 |
724
+ | 2.8883 | 41600 | 0.0001 |
725
+ | 2.8952 | 41700 | 0.0001 |
726
+ | 2.9022 | 41800 | 0.0001 |
727
+ | 2.9091 | 41900 | 0.0001 |
728
+ | 2.9161 | 42000 | 0.0001 |
729
+ | 2.9230 | 42100 | 0.0001 |
730
+ | 2.9299 | 42200 | 0.0001 |
731
+ | 2.9369 | 42300 | 0.0001 |
732
+ | 2.9438 | 42400 | 0.0001 |
733
+ | 2.9508 | 42500 | 0.0001 |
734
+ | 2.9577 | 42600 | 0.0001 |
735
+ | 2.9647 | 42700 | 0.0001 |
736
+ | 2.9716 | 42800 | 0.0001 |
737
+ | 2.9785 | 42900 | 0.0001 |
738
+ | 2.9855 | 43000 | 0.0001 |
739
+ | 2.9924 | 43100 | 0.0001 |
740
+ | 2.9994 | 43200 | 0.0001 |
741
+ | 3.0063 | 43300 | 0.0001 |
742
+ | 3.0133 | 43400 | 0.0001 |
743
+ | 3.0202 | 43500 | 0.0001 |
744
+ | 3.0271 | 43600 | 0.0001 |
745
+ | 3.0341 | 43700 | 0.0001 |
746
+ | 3.0410 | 43800 | 0.0001 |
747
+ | 3.0480 | 43900 | 0.0001 |
748
+ | 3.0549 | 44000 | 0.0001 |
749
+ | 3.0619 | 44100 | 0.0001 |
750
+ | 3.0688 | 44200 | 0.0001 |
751
+ | 3.0757 | 44300 | 0.0001 |
752
+ | 3.0827 | 44400 | 0.0001 |
753
+ | 3.0896 | 44500 | 0.0001 |
754
+ | 3.0966 | 44600 | 0.0001 |
755
+ | 3.1035 | 44700 | 0.0001 |
756
+ | 3.1105 | 44800 | 0.0001 |
757
+ | 3.1174 | 44900 | 0.0001 |
758
+ | 3.1243 | 45000 | 0.0001 |
759
+ | 3.1313 | 45100 | 0.0001 |
760
+ | 3.1382 | 45200 | 0.0001 |
761
+ | 3.1452 | 45300 | 0.0001 |
762
+ | 3.1521 | 45400 | 0.0001 |
763
+ | 3.1591 | 45500 | 0.0001 |
764
+ | 3.1660 | 45600 | 0.0001 |
765
+ | 3.1730 | 45700 | 0.0001 |
766
+ | 3.1799 | 45800 | 0.0001 |
767
+ | 3.1868 | 45900 | 0.0001 |
768
+ | 3.1938 | 46000 | 0.0001 |
769
+ | 3.2007 | 46100 | 0.0001 |
770
+ | 3.2077 | 46200 | 0.0001 |
771
+ | 3.2146 | 46300 | 0.0001 |
772
+ | 3.2216 | 46400 | 0.0001 |
773
+ | 3.2285 | 46500 | 0.0001 |
774
+ | 3.2354 | 46600 | 0.0001 |
775
+ | 3.2424 | 46700 | 0.0001 |
776
+ | 3.2493 | 46800 | 0.0001 |
777
+ | 3.2563 | 46900 | 0.0001 |
778
+ | 3.2632 | 47000 | 0.0001 |
779
+ | 3.2702 | 47100 | 0.0001 |
780
+ | 3.2771 | 47200 | 0.0001 |
781
+ | 3.2840 | 47300 | 0.0001 |
782
+ | 3.2910 | 47400 | 0.0001 |
783
+ | 3.2979 | 47500 | 0.0001 |
784
+ | 3.3049 | 47600 | 0.0001 |
785
+ | 3.3118 | 47700 | 0.0001 |
786
+ | 3.3188 | 47800 | 0.0001 |
787
+ | 3.3257 | 47900 | 0.0001 |
788
+ | 3.3326 | 48000 | 0.0001 |
789
+ | 3.3396 | 48100 | 0.0001 |
790
+ | 3.3465 | 48200 | 0.0001 |
791
+ | 3.3535 | 48300 | 0.0001 |
792
+ | 3.3604 | 48400 | 0.0001 |
793
+ | 3.3674 | 48500 | 0.0001 |
794
+ | 3.3743 | 48600 | 0.0001 |
795
+ | 3.3812 | 48700 | 0.0001 |
796
+ | 3.3882 | 48800 | 0.0001 |
797
+ | 3.3951 | 48900 | 0.0001 |
798
+ | 3.4021 | 49000 | 0.0001 |
799
+ | 3.4090 | 49100 | 0.0001 |
800
+ | 3.4160 | 49200 | 0.0001 |
801
+ | 3.4229 | 49300 | 0.0001 |
802
+ | 3.4298 | 49400 | 0.0001 |
803
+ | 3.4368 | 49500 | 0.0001 |
804
+ | 3.4437 | 49600 | 0.0001 |
805
+ | 3.4507 | 49700 | 0.0001 |
806
+ | 3.4576 | 49800 | 0.0001 |
807
+ | 3.4646 | 49900 | 0.0001 |
808
+ | 3.4715 | 50000 | 0.0001 |
809
+ | 3.4784 | 50100 | 0.0001 |
810
+ | 3.4854 | 50200 | 0.0001 |
811
+ | 3.4923 | 50300 | 0.0001 |
812
+ | 3.4993 | 50400 | 0.0001 |
813
+ | 3.5062 | 50500 | 0.0001 |
814
+ | 3.5132 | 50600 | 0.0001 |
815
+ | 3.5201 | 50700 | 0.0001 |
816
+ | 3.5270 | 50800 | 0.0001 |
817
+ | 3.5340 | 50900 | 0.0001 |
818
+ | 3.5409 | 51000 | 0.0001 |
819
+ | 3.5479 | 51100 | 0.0001 |
820
+ | 3.5548 | 51200 | 0.0001 |
821
+ | 3.5618 | 51300 | 0.0001 |
822
+ | 3.5687 | 51400 | 0.0001 |
823
+ | 3.5756 | 51500 | 0.0001 |
824
+ | 3.5826 | 51600 | 0.0001 |
825
+ | 3.5895 | 51700 | 0.0001 |
826
+ | 3.5965 | 51800 | 0.0001 |
827
+ | 3.6034 | 51900 | 0.0001 |
828
+ | 3.6104 | 52000 | 0.0001 |
829
+ | 3.6173 | 52100 | 0.0001 |
830
+ | 3.6242 | 52200 | 0.0001 |
831
+ | 3.6312 | 52300 | 0.0001 |
832
+ | 3.6381 | 52400 | 0.0001 |
833
+ | 3.6451 | 52500 | 0.0001 |
834
+ | 3.6520 | 52600 | 0.0001 |
835
+ | 3.6590 | 52700 | 0.0001 |
836
+ | 3.6659 | 52800 | 0.0001 |
837
+ | 3.6728 | 52900 | 0.0001 |
838
+ | 3.6798 | 53000 | 0.0001 |
839
+ | 3.6867 | 53100 | 0.0001 |
840
+ | 3.6937 | 53200 | 0.0001 |
841
+ | 3.7006 | 53300 | 0.0001 |
842
+ | 3.7076 | 53400 | 0.0001 |
843
+ | 3.7145 | 53500 | 0.0001 |
844
+ | 3.7214 | 53600 | 0.0001 |
845
+ | 3.7284 | 53700 | 0.0001 |
846
+ | 3.7353 | 53800 | 0.0001 |
847
+ | 3.7423 | 53900 | 0.0001 |
848
+ | 3.7492 | 54000 | 0.0001 |
849
+ | 3.7562 | 54100 | 0.0001 |
850
+ | 3.7631 | 54200 | 0.0001 |
851
+ | 3.7700 | 54300 | 0.0001 |
852
+ | 3.7770 | 54400 | 0.0001 |
853
+ | 3.7839 | 54500 | 0.0001 |
854
+ | 3.7909 | 54600 | 0.0001 |
855
+ | 3.7978 | 54700 | 0.0001 |
856
+ | 3.8048 | 54800 | 0.0001 |
857
+ | 3.8117 | 54900 | 0.0001 |
858
+ | 3.8186 | 55000 | 0.0001 |
859
+ | 3.8256 | 55100 | 0.0001 |
860
+ | 3.8325 | 55200 | 0.0001 |
861
+ | 3.8395 | 55300 | 0.0001 |
862
+ | 3.8464 | 55400 | 0.0001 |
863
+ | 3.8534 | 55500 | 0.0001 |
864
+ | 3.8603 | 55600 | 0.0001 |
865
+ | 3.8672 | 55700 | 0.0001 |
866
+ | 3.8742 | 55800 | 0.0001 |
867
+ | 3.8811 | 55900 | 0.0001 |
868
+ | 3.8881 | 56000 | 0.0001 |
869
+ | 3.8950 | 56100 | 0.0001 |
870
+ | 3.9020 | 56200 | 0.0001 |
871
+ | 3.9089 | 56300 | 0.0001 |
872
+ | 3.9159 | 56400 | 0.0001 |
873
+ | 3.9228 | 56500 | 0.0001 |
874
+ | 3.9297 | 56600 | 0.0001 |
875
+ | 3.9367 | 56700 | 0.0001 |
876
+ | 3.9436 | 56800 | 0.0001 |
877
+ | 3.9506 | 56900 | 0.0001 |
878
+ | 3.9575 | 57000 | 0.0001 |
879
+ | 3.9645 | 57100 | 0.0001 |
880
+ | 3.9714 | 57200 | 0.0001 |
881
+ | 3.9783 | 57300 | 0.0001 |
882
+ | 3.9853 | 57400 | 0.0001 |
883
+ | 3.9922 | 57500 | 0.0001 |
884
+ | 3.9992 | 57600 | 0.0001 |
885
+ | 4.0061 | 57700 | 0.0001 |
886
+ | 4.0131 | 57800 | 0.0001 |
887
+ | 4.0200 | 57900 | 0.0001 |
888
+ | 4.0269 | 58000 | 0.0001 |
889
+ | 4.0339 | 58100 | 0.0001 |
890
+ | 4.0408 | 58200 | 0.0001 |
891
+ | 4.0478 | 58300 | 0.0001 |
892
+ | 4.0547 | 58400 | 0.0001 |
893
+ | 4.0617 | 58500 | 0.0001 |
894
+ | 4.0686 | 58600 | 0.0001 |
895
+ | 4.0755 | 58700 | 0.0001 |
896
+ | 4.0825 | 58800 | 0.0001 |
897
+ | 4.0894 | 58900 | 0.0001 |
898
+ | 4.0964 | 59000 | 0.0001 |
899
+ | 4.1033 | 59100 | 0.0001 |
900
+ | 4.1103 | 59200 | 0.0001 |
901
+ | 4.1172 | 59300 | 0.0001 |
902
+ | 4.1241 | 59400 | 0.0001 |
903
+ | 4.1311 | 59500 | 0.0001 |
904
+ | 4.1380 | 59600 | 0.0001 |
905
+ | 4.1450 | 59700 | 0.0001 |
906
+ | 4.1519 | 59800 | 0.0001 |
907
+ | 4.1589 | 59900 | 0.0001 |
908
+ | 4.1658 | 60000 | 0.0001 |
909
+ | 4.1727 | 60100 | 0.0001 |
910
+ | 4.1797 | 60200 | 0.0001 |
911
+ | 4.1866 | 60300 | 0.0001 |
912
+ | 4.1936 | 60400 | 0.0001 |
913
+ | 4.2005 | 60500 | 0.0001 |
914
+ | 4.2075 | 60600 | 0.0001 |
915
+ | 4.2144 | 60700 | 0.0001 |
916
+ | 4.2213 | 60800 | 0.0001 |
917
+ | 4.2283 | 60900 | 0.0001 |
918
+ | 4.2352 | 61000 | 0.0001 |
919
+ | 4.2422 | 61100 | 0.0001 |
920
+ | 4.2491 | 61200 | 0.0001 |
921
+ | 4.2561 | 61300 | 0.0001 |
922
+ | 4.2630 | 61400 | 0.0001 |
923
+ | 4.2699 | 61500 | 0.0001 |
924
+ | 4.2769 | 61600 | 0.0001 |
925
+ | 4.2838 | 61700 | 0.0001 |
926
+ | 4.2908 | 61800 | 0.0001 |
927
+ | 4.2977 | 61900 | 0.0001 |
928
+ | 4.3047 | 62000 | 0.0001 |
929
+ | 4.3116 | 62100 | 0.0001 |
930
+ | 4.3185 | 62200 | 0.0001 |
931
+ | 4.3255 | 62300 | 0.0001 |
932
+ | 4.3324 | 62400 | 0.0001 |
933
+ | 4.3394 | 62500 | 0.0001 |
934
+ | 4.3463 | 62600 | 0.0001 |
935
+ | 4.3533 | 62700 | 0.0001 |
936
+ | 4.3602 | 62800 | 0.0001 |
937
+ | 4.3671 | 62900 | 0.0001 |
938
+ | 4.3741 | 63000 | 0.0001 |
939
+ | 4.3810 | 63100 | 0.0001 |
940
+ | 4.3880 | 63200 | 0.0001 |
941
+ | 4.3949 | 63300 | 0.0001 |
942
+ | 4.4019 | 63400 | 0.0 |
943
+ | 4.4088 | 63500 | 0.0001 |
944
+ | 4.4157 | 63600 | 0.0001 |
945
+ | 4.4227 | 63700 | 0.0001 |
946
+ | 4.4296 | 63800 | 0.0001 |
947
+ | 4.4366 | 63900 | 0.0001 |
948
+ | 4.4435 | 64000 | 0.0001 |
949
+ | 4.4505 | 64100 | 0.0001 |
950
+ | 4.4574 | 64200 | 0.0001 |
951
+ | 4.4643 | 64300 | 0.0 |
952
+ | 4.4713 | 64400 | 0.0001 |
953
+ | 4.4782 | 64500 | 0.0001 |
954
+ | 4.4852 | 64600 | 0.0001 |
955
+ | 4.4921 | 64700 | 0.0001 |
956
+ | 4.4991 | 64800 | 0.0001 |
957
+ | 4.5060 | 64900 | 0.0001 |
958
+ | 4.5129 | 65000 | 0.0 |
959
+ | 4.5199 | 65100 | 0.0 |
960
+ | 4.5268 | 65200 | 0.0 |
961
+ | 4.5338 | 65300 | 0.0 |
962
+ | 4.5407 | 65400 | 0.0 |
963
+ | 4.5477 | 65500 | 0.0 |
964
+ | 4.5546 | 65600 | 0.0 |
965
+ | 4.5615 | 65700 | 0.0001 |
966
+ | 4.5685 | 65800 | 0.0 |
967
+ | 4.5754 | 65900 | 0.0001 |
968
+ | 4.5824 | 66000 | 0.0001 |
969
+ | 4.5893 | 66100 | 0.0 |
970
+ | 4.5963 | 66200 | 0.0001 |
971
+ | 4.6032 | 66300 | 0.0001 |
972
+ | 4.6102 | 66400 | 0.0 |
973
+ | 4.6171 | 66500 | 0.0001 |
974
+ | 4.6240 | 66600 | 0.0 |
975
+ | 4.6310 | 66700 | 0.0 |
976
+ | 4.6379 | 66800 | 0.0001 |
977
+ | 4.6449 | 66900 | 0.0 |
978
+ | 4.6518 | 67000 | 0.0 |
979
+ | 4.6588 | 67100 | 0.0 |
980
+ | 4.6657 | 67200 | 0.0001 |
981
+ | 4.6726 | 67300 | 0.0001 |
982
+ | 4.6796 | 67400 | 0.0001 |
983
+ | 4.6865 | 67500 | 0.0 |
984
+ | 4.6935 | 67600 | 0.0001 |
985
+ | 4.7004 | 67700 | 0.0001 |
986
+ | 4.7074 | 67800 | 0.0001 |
987
+ | 4.7143 | 67900 | 0.0001 |
988
+ | 4.7212 | 68000 | 0.0 |
989
+ | 4.7282 | 68100 | 0.0001 |
990
+ | 4.7351 | 68200 | 0.0 |
991
+ | 4.7421 | 68300 | 0.0 |
992
+ | 4.7490 | 68400 | 0.0 |
993
+ | 4.7560 | 68500 | 0.0001 |
994
+ | 4.7629 | 68600 | 0.0001 |
995
+ | 4.7698 | 68700 | 0.0 |
996
+ | 4.7768 | 68800 | 0.0 |
997
+ | 4.7837 | 68900 | 0.0001 |
998
+ | 4.7907 | 69000 | 0.0001 |
999
+ | 4.7976 | 69100 | 0.0 |
1000
+ | 4.8046 | 69200 | 0.0 |
1001
+ | 4.8115 | 69300 | 0.0001 |
1002
+ | 4.8184 | 69400 | 0.0001 |
1003
+ | 4.8254 | 69500 | 0.0001 |
1004
+ | 4.8323 | 69600 | 0.0001 |
1005
+ | 4.8393 | 69700 | 0.0 |
1006
+ | 4.8462 | 69800 | 0.0001 |
1007
+ | 4.8532 | 69900 | 0.0 |
1008
+ | 4.8601 | 70000 | 0.0 |
1009
+ | 4.8670 | 70100 | 0.0 |
1010
+ | 4.8740 | 70200 | 0.0 |
1011
+ | 4.8809 | 70300 | 0.0001 |
1012
+ | 4.8879 | 70400 | 0.0 |
1013
+ | 4.8948 | 70500 | 0.0 |
1014
+ | 4.9018 | 70600 | 0.0001 |
1015
+ | 4.9087 | 70700 | 0.0001 |
1016
+ | 4.9156 | 70800 | 0.0001 |
1017
+ | 4.9226 | 70900 | 0.0 |
1018
+ | 4.9295 | 71000 | 0.0001 |
1019
+ | 4.9365 | 71100 | 0.0001 |
1020
+ | 4.9434 | 71200 | 0.0 |
1021
+ | 4.9504 | 71300 | 0.0001 |
1022
+ | 4.9573 | 71400 | 0.0 |
1023
+ | 4.9642 | 71500 | 0.0 |
1024
+ | 4.9712 | 71600 | 0.0 |
1025
+ | 4.9781 | 71700 | 0.0001 |
1026
+ | 4.9851 | 71800 | 0.0 |
1027
+ | 4.9920 | 71900 | 0.0001 |
1028
+ | 4.9990 | 72000 | 0.0 |
1029
+
1030
+ </details>
1031
+
1032
+ ### Framework Versions
1033
+ - Python: 3.10.12
1034
+ - Sentence Transformers: 3.3.1
1035
+ - Transformers: 4.47.0
1036
+ - PyTorch: 2.5.1+cu121
1037
+ - Accelerate: 1.2.1
1038
+ - Datasets: 3.2.0
1039
+ - Tokenizers: 0.21.0
1040
+
1041
+ ## Citation
1042
+
1043
+ ### BibTeX
1044
+
1045
+ #### Sentence Transformers
1046
+ ```bibtex
1047
+ @inproceedings{reimers-2019-sentence-bert,
1048
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1049
+ author = "Reimers, Nils and Gurevych, Iryna",
1050
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1051
+ month = "11",
1052
+ year = "2019",
1053
+ publisher = "Association for Computational Linguistics",
1054
+ url = "https://arxiv.org/abs/1908.10084",
1055
+ }
1056
+ ```
1057
+
1058
+ <!--
1059
+ ## Glossary
1060
+
1061
+ *Clearly define terms in order to be accessible across audiences.*
1062
+ -->
1063
+
1064
+ <!--
1065
+ ## Model Card Authors
1066
+
1067
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1068
+ -->
1069
+
1070
+ <!--
1071
+ ## Model Card Contact
1072
+
1073
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1074
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }