Update modeling_latent_recurrent_depth.py
Browse files
modeling_latent_recurrent_depth.py
CHANGED
|
@@ -4,7 +4,146 @@ import torch.nn.functional as F
|
|
| 4 |
from typing import Optional, Tuple
|
| 5 |
import math
|
| 6 |
from transformers import PretrainedConfig, PreTrainedModel
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Configuration for the Latent Recurrent Depth Model
|
| 10 |
class LatentRecurrentDepthConfig(PretrainedConfig):
|
|
|
|
| 4 |
from typing import Optional, Tuple
|
| 5 |
import math
|
| 6 |
from transformers import PretrainedConfig, PreTrainedModel
|
| 7 |
+
|
| 8 |
+
class MultiHeadAttention(nn.Module):
|
| 9 |
+
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 10 |
+
super().__init__()
|
| 11 |
+
assert d_model % num_heads == 0
|
| 12 |
+
|
| 13 |
+
self.d_model = d_model
|
| 14 |
+
self.num_heads = num_heads
|
| 15 |
+
self.head_dim = d_model // num_heads
|
| 16 |
+
|
| 17 |
+
self.q_proj = nn.Linear(d_model, d_model)
|
| 18 |
+
self.k_proj = nn.Linear(d_model, d_model)
|
| 19 |
+
self.v_proj = nn.Linear(d_model, d_model)
|
| 20 |
+
self.o_proj = nn.Linear(d_model, d_model)
|
| 21 |
+
|
| 22 |
+
self.dropout = nn.Dropout(dropout)
|
| 23 |
+
|
| 24 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 25 |
+
batch_size, seq_len, d_model = x.shape
|
| 26 |
+
|
| 27 |
+
# Project and reshape for multi-head attention
|
| 28 |
+
q = self.q_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 29 |
+
k = self.k_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 30 |
+
v = self.v_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 31 |
+
|
| 32 |
+
# Transpose for attention computation
|
| 33 |
+
q = q.transpose(1, 2) # (batch_size, num_heads, seq_len, head_dim)
|
| 34 |
+
k = k.transpose(1, 2)
|
| 35 |
+
v = v.transpose(1, 2)
|
| 36 |
+
|
| 37 |
+
# Compute attention scores
|
| 38 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
| 39 |
+
|
| 40 |
+
if mask is not None:
|
| 41 |
+
scores = scores.masked_fill(mask == 0, float('-inf'))
|
| 42 |
+
|
| 43 |
+
attn_weights = F.softmax(scores, dim=-1)
|
| 44 |
+
attn_weights = self.dropout(attn_weights)
|
| 45 |
+
|
| 46 |
+
# Apply attention to values
|
| 47 |
+
out = torch.matmul(attn_weights, v) # (batch_size, num_heads, seq_len, head_dim)
|
| 48 |
+
out = out.transpose(1, 2) # (batch_size, seq_len, num_heads, head_dim)
|
| 49 |
+
out = out.reshape(batch_size, seq_len, d_model)
|
| 50 |
+
|
| 51 |
+
return self.o_proj(out)
|
| 52 |
+
|
| 53 |
+
class PreludeBlock(nn.Module):
|
| 54 |
+
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 55 |
+
super().__init__()
|
| 56 |
+
self.token_embedding = nn.Embedding(vocab_size, d_model)
|
| 57 |
+
self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model)) # Max sequence length of 1024
|
| 58 |
+
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
| 59 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 60 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 61 |
+
self.feed_forward = nn.Sequential(
|
| 62 |
+
nn.Linear(d_model, 4 * d_model),
|
| 63 |
+
nn.GELU(),
|
| 64 |
+
nn.Linear(4 * d_model, d_model),
|
| 65 |
+
nn.Dropout(dropout)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 69 |
+
seq_len = x.size(1)
|
| 70 |
+
# Embed tokens and add positional encoding
|
| 71 |
+
x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :]
|
| 72 |
+
|
| 73 |
+
# Self-attention block
|
| 74 |
+
attended = self.attention(self.norm1(x), mask)
|
| 75 |
+
x = x + attended
|
| 76 |
+
|
| 77 |
+
# Feed-forward block
|
| 78 |
+
x = x + self.feed_forward(self.norm2(x))
|
| 79 |
+
return x
|
| 80 |
+
|
| 81 |
+
class RecurrentBlock(nn.Module):
|
| 82 |
+
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
| 85 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 86 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 87 |
+
self.feed_forward = nn.Sequential(
|
| 88 |
+
nn.Linear(d_model, 4 * d_model),
|
| 89 |
+
nn.GELU(),
|
| 90 |
+
nn.Linear(4 * d_model, d_model),
|
| 91 |
+
nn.Dropout(dropout)
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Recurrent state projection
|
| 95 |
+
self.state_proj = nn.Linear(d_model, d_model)
|
| 96 |
+
|
| 97 |
+
def forward(self, x: torch.Tensor, recurrent_state: torch.Tensor,
|
| 98 |
+
mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 99 |
+
# Update recurrent state
|
| 100 |
+
recurrent_state = self.state_proj(recurrent_state)
|
| 101 |
+
|
| 102 |
+
# Combine input with recurrent state
|
| 103 |
+
x = x + recurrent_state
|
| 104 |
+
|
| 105 |
+
# Self-attention block
|
| 106 |
+
attended = self.attention(self.norm1(x), mask)
|
| 107 |
+
x = x + attended
|
| 108 |
+
|
| 109 |
+
# Feed-forward block
|
| 110 |
+
x = x + self.feed_forward(self.norm2(x))
|
| 111 |
+
|
| 112 |
+
return x, x # Return both output and new recurrent state
|
| 113 |
+
|
| 114 |
+
class CodaBlock(nn.Module):
|
| 115 |
+
def __init__(self, d_model: int, vocab_size: int):
|
| 116 |
+
super().__init__()
|
| 117 |
+
self.norm = nn.LayerNorm(d_model)
|
| 118 |
+
self.output_proj = nn.Linear(d_model, vocab_size)
|
| 119 |
+
|
| 120 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 121 |
+
x = self.norm(x)
|
| 122 |
+
return self.output_proj(x)
|
| 123 |
+
|
| 124 |
+
class LatentRecurrentDepthLM(nn.Module):
|
| 125 |
+
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 126 |
+
super().__init__()
|
| 127 |
+
self.prelude = PreludeBlock(vocab_size, d_model, num_heads, dropout)
|
| 128 |
+
self.recurrent = RecurrentBlock(d_model, num_heads, dropout)
|
| 129 |
+
self.coda = CodaBlock(d_model, vocab_size)
|
| 130 |
+
|
| 131 |
+
def forward(self, x: torch.Tensor, num_iterations: int,
|
| 132 |
+
mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 133 |
+
# Initial embedding and processing
|
| 134 |
+
hidden = self.prelude(x, mask)
|
| 135 |
+
|
| 136 |
+
# Initialize recurrent state
|
| 137 |
+
recurrent_state = torch.zeros_like(hidden)
|
| 138 |
+
|
| 139 |
+
# Apply recurrent block multiple times
|
| 140 |
+
for _ in range(num_iterations):
|
| 141 |
+
hidden, recurrent_state = self.recurrent(hidden, recurrent_state, mask)
|
| 142 |
+
|
| 143 |
+
# Final output projection
|
| 144 |
+
return self.coda(hidden)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
|
| 148 |
# Configuration for the Latent Recurrent Depth Model
|
| 149 |
class LatentRecurrentDepthConfig(PretrainedConfig):
|