File size: 2,160 Bytes
8f14b41 66df073 8f14b41 66df073 8f14b41 66df073 8f14b41 66df073 8f14b41 66df073 8f14b41 66df073 8f14b41 66df073 8f14b41 66df073 8f14b41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: CS685-text-summarizer
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: multi_news
type: multi_news
config: default
split: train[:20%]
args: default
metrics:
- name: Rouge1
type: rouge
value: 9.8777
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CS685-text-summarizer
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4960
- Rouge1: 9.8777
- Rouge2: 3.6509
- Rougel: 7.597
- Rougelsum: 9.0495
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.8402 | 1.0 | 1349 | 2.5256 | 9.7548 | 3.5429 | 7.5078 | 8.9174 |
| 2.5581 | 2.0 | 2698 | 2.5011 | 9.7256 | 3.6262 | 7.5644 | 8.8904 |
| 2.3908 | 3.0 | 4047 | 2.4948 | 9.7569 | 3.5976 | 7.5209 | 8.8919 |
| 2.2744 | 4.0 | 5396 | 2.4875 | 9.9116 | 3.7758 | 7.6823 | 9.0881 |
| 2.1908 | 5.0 | 6745 | 2.4960 | 9.8777 | 3.6509 | 7.597 | 9.0495 |
### Framework versions
- Transformers 4.29.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|