okunator commited on
Commit
20ee754
·
verified ·
1 Parent(s): 55f2d3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -16
README.md CHANGED
@@ -9,6 +9,7 @@ tags:
9
 
10
  # Cellpose Nuclei Segmentation Model Trained With High Grade Serous Ovarian Cancer Dataset!
11
 
 
12
  # Dataset classes
13
 
14
  ```
@@ -21,34 +22,23 @@ nuclei_classes = {
21
  5: "macrophage_cytoplasm",
22
  6: "macrophage_nucleus",
23
  }
24
-
25
- tissue_classes = {
26
- 0: "background",
27
- 1: "stroma",
28
- 2: "omentum",
29
- 3: "tumor",
30
- 4: "hemorragia",
31
- 5: "necrosis",
32
- 6: "serum",
33
- }
34
  ```
35
 
36
- # Usage
37
 
38
- ## Install cellseg_models.pytorch and albumentations
39
  ```
40
  pip install cellseg-models-pytorch
41
  pip install albumentations
42
  ```
43
 
44
- ## Load trained model
45
  ```python
46
  from cellseg_models_pytorch.models.cellpose import CellPose
47
 
48
  model = CellPose.from_pretrained("csmp-hub/cellpose-histo-hgsc-nuc-v1")
49
  ```
50
 
51
- ## Run inference for one image
52
  ```python
53
  from albumentations import Resize, Compose
54
  from cellseg_models_pytorch.utils import FileHandler
@@ -67,7 +57,7 @@ out = model.post_process(prob)
67
  # out = {"nuc": [(nuc instances (H, W), nuc types (H, W))], "cyto": None, "tissue": None}
68
  ```
69
 
70
- ## Run inference for image batch
71
  ```python
72
  from cellseg_models_pytorch.utils import FileHandler
73
 
@@ -92,7 +82,7 @@ out = model.post_process(prob)
92
  #}
93
  ```
94
 
95
- ## Visualize output
96
  ```python
97
  from matplotlib import pyplot as plt
98
  from skimage.color import label2rgb
@@ -105,6 +95,8 @@ ax[2].imshow(label2rgb(out["nuc"][0][1], bg_label=0)) # type_map
105
 
106
  ## Citation
107
 
 
 
108
  @misc{csmp2022,
109
  title={{cellseg_models.pytorch}: Cell/Nuclei Segmentation Models and Benchmark.},
110
  author={Oskari Lehtonen},
@@ -112,7 +104,10 @@ ax[2].imshow(label2rgb(out["nuc"][0][1], bg_label=0)) # type_map
112
  doi = {10.5281/zenodo.7064617}
113
  year={2022}
114
  }
 
115
 
 
 
116
  @article{Stringer2020,
117
  title = {Cellpose: a generalist algorithm for cellular segmentation},
118
  volume = {18},
@@ -127,3 +122,4 @@ ax[2].imshow(label2rgb(out["nuc"][0][1], bg_label=0)) # type_map
127
  month = dec,
128
  pages = {100–106}
129
  }
 
 
9
 
10
  # Cellpose Nuclei Segmentation Model Trained With High Grade Serous Ovarian Cancer Dataset!
11
 
12
+
13
  # Dataset classes
14
 
15
  ```
 
22
  5: "macrophage_cytoplasm",
23
  6: "macrophage_nucleus",
24
  }
 
 
 
 
 
 
 
 
 
 
25
  ```
26
 
 
27
 
28
+ ## 1. Install cellseg_models.pytorch and albumentations
29
  ```
30
  pip install cellseg-models-pytorch
31
  pip install albumentations
32
  ```
33
 
34
+ ## 2. Load trained model
35
  ```python
36
  from cellseg_models_pytorch.models.cellpose import CellPose
37
 
38
  model = CellPose.from_pretrained("csmp-hub/cellpose-histo-hgsc-nuc-v1")
39
  ```
40
 
41
+ ## 3. Run inference for one image
42
  ```python
43
  from albumentations import Resize, Compose
44
  from cellseg_models_pytorch.utils import FileHandler
 
57
  # out = {"nuc": [(nuc instances (H, W), nuc types (H, W))], "cyto": None, "tissue": None}
58
  ```
59
 
60
+ ## 3.1 Run inference for image batch
61
  ```python
62
  from cellseg_models_pytorch.utils import FileHandler
63
 
 
82
  #}
83
  ```
84
 
85
+ ## 4. Visualize output
86
  ```python
87
  from matplotlib import pyplot as plt
88
  from skimage.color import label2rgb
 
95
 
96
  ## Citation
97
 
98
+ cellseg_models.pytorch:
99
+ ```
100
  @misc{csmp2022,
101
  title={{cellseg_models.pytorch}: Cell/Nuclei Segmentation Models and Benchmark.},
102
  author={Oskari Lehtonen},
 
104
  doi = {10.5281/zenodo.7064617}
105
  year={2022}
106
  }
107
+ ```
108
 
109
+ Cellpose original paper:
110
+ ```
111
  @article{Stringer2020,
112
  title = {Cellpose: a generalist algorithm for cellular segmentation},
113
  volume = {18},
 
122
  month = dec,
123
  pages = {100–106}
124
  }
125
+ ```