okunator commited on
Commit
80d746c
·
verified ·
1 Parent(s): c5b4f11

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -6
README.md CHANGED
@@ -4,13 +4,19 @@ pipeline_tag: image-segmentation
4
  tags:
5
  - medical
6
  - biology
7
- - histology
8
  ---
9
 
10
- # Cellpose Nuclei Segmentation Model Trained With High Grade Serous Ovarian Cancer Dataset!
11
 
 
 
 
12
 
13
- # Dataset classes
 
 
 
 
14
 
15
  ```
16
  nuclei_classes = {
@@ -24,6 +30,14 @@ nuclei_classes = {
24
  }
25
  ```
26
 
 
 
 
 
 
 
 
 
27
 
28
  ## 1. Install cellseg_models.pytorch and albumentations
29
  ```
@@ -94,7 +108,12 @@ ax[1].imshow(label2rgb(out["nuc"][0][0], bg_label=0)) # inst_map
94
  ax[2].imshow(label2rgb(out["nuc"][0][1], bg_label=0)) # type_map
95
  ```
96
 
97
- ## Citation
 
 
 
 
 
98
 
99
  cellseg_models.pytorch:
100
  ```
@@ -137,5 +156,4 @@ Unless required by applicable law or agreed to in writing, software distributed
137
  ## Additional Terms
138
 
139
  While the Apache 2.0 License grants broad permissions, we kindly request that users adhere to the following guidelines:
140
- Medical or Clinical Use: This model is not intended for use in medical diagnosis, treatment, or prevention of disease of real patients. It should not be used as a substitute for professional medical advice.
141
-
 
4
  tags:
5
  - medical
6
  - biology
 
7
  ---
8
 
9
+ # Cellpose Model for High-Grade Serous Ovarian Cancer Nuclei Segmentation
10
 
11
+ ## Dataset
12
+ Semi-manually annotated HGSC Primary Omental samples from the (private) DECIDER cohort. Data acquired in the DECIDER project,
13
+ funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 965193.
14
 
15
+ **Contains:**
16
+ - 198 varying sized image crops at 20x magnification.
17
+ - 98 468 annotated nuclei
18
+
19
+ ## Dataset classes
20
 
21
  ```
22
  nuclei_classes = {
 
30
  }
31
  ```
32
 
33
+ ## Dataset Class Distribution
34
+ - connective nuclei: 46 100 (~47%)
35
+ - neoplastic nuclei: 22 761 (~23%)
36
+ - inflammatory nuclei 19 185 (~19%)
37
+ - dead nuclei 1859 (~2%)
38
+ - macrophage nuclei and cytoplasms: 4550 (~5%)
39
+
40
+ # USAGE
41
 
42
  ## 1. Install cellseg_models.pytorch and albumentations
43
  ```
 
108
  ax[2].imshow(label2rgb(out["nuc"][0][1], bg_label=0)) # type_map
109
  ```
110
 
111
+ # Model Training Details:
112
+ First, the image crops in the training data were tiled into 224x224px patches with a sliding window (stride=32px).
113
+
114
+ Rest of the training procedures follow this notebook: [link]
115
+
116
+ # Citation
117
 
118
  cellseg_models.pytorch:
119
  ```
 
156
  ## Additional Terms
157
 
158
  While the Apache 2.0 License grants broad permissions, we kindly request that users adhere to the following guidelines:
159
+ Medical or Clinical Use: This model is not intended for use in medical diagnosis, treatment, or prevention of disease of real patients. It should not be used as a substitute for professional medical advice.