File size: 55,740 Bytes
10bf19f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "8cb392f0",
   "metadata": {},
   "source": [
    "# Evaluate Classification"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81f7459d",
   "metadata": {},
   "source": [
    "## Setup"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "416c4176",
   "metadata": {},
   "source": [
    "#### Load the Model and libaries."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "51a7696a",
   "metadata": {
    "height": 115
   },
   "outputs": [],
   "source": [
    "from src.Language_Evaluation_LC import llm_language_evaluation\n",
    "from src.data_analysis import run_analysis\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f02b861d",
   "metadata": {
    "height": 30
   },
   "source": [
    "#### Load the Constants"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9686002a",
   "metadata": {
    "height": 47
   },
   "outputs": [],
   "source": [
    "PATH = 'data/full_dataset.csv'\n",
    "MODEL = \"Mistral-7b\"\n",
    "TEMPERATURE = 1\n",
    "N_REPETITIONS = 11\n",
    "REASONING = False\n",
    "LANGUAGES = ['portuguese', 'spanish', 'english', 'tagalog']"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1c403d62",
   "metadata": {},
   "source": [
    "#### Run The Experiments:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "23ec69a1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      "The model file 'Models/Mistral-7b.gguf' already exists. Do you want to overwrite it? (yes/no):  No\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model installation aborted.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from Models/Mistral-7b.gguf (version GGUF V2 (latest))\n",
      "llama_model_loader: - tensor    0:                token_embd.weight q8_0     [  4096, 32000,     1,     1 ]\n",
      "llama_model_loader: - tensor    1:              blk.0.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    2:              blk.0.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor    3:              blk.0.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor    4:         blk.0.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   10:              blk.1.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   11:              blk.1.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   12:              blk.1.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   13:         blk.1.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   19:              blk.2.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   20:              blk.2.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   21:              blk.2.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   22:         blk.2.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   28:              blk.3.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   29:              blk.3.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   30:              blk.3.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   31:         blk.3.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   37:              blk.4.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   38:              blk.4.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   39:              blk.4.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   40:         blk.4.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   46:              blk.5.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   47:              blk.5.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   48:              blk.5.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   49:         blk.5.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   55:              blk.6.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   56:              blk.6.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   57:              blk.6.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   58:         blk.6.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   64:              blk.7.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   65:              blk.7.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   66:              blk.7.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   67:         blk.7.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   73:              blk.8.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   74:              blk.8.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   75:              blk.8.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   76:         blk.8.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   82:              blk.9.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   83:              blk.9.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   84:              blk.9.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   85:         blk.9.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   91:             blk.10.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   92:             blk.10.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   93:             blk.10.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   94:        blk.10.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  100:             blk.11.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  101:             blk.11.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  102:             blk.11.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  103:        blk.11.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  109:             blk.12.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  110:             blk.12.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  111:             blk.12.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  112:        blk.12.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  118:             blk.13.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  119:             blk.13.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  120:             blk.13.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  121:        blk.13.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  127:             blk.14.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  128:             blk.14.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  129:             blk.14.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  130:        blk.14.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  136:             blk.15.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  137:             blk.15.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  138:             blk.15.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  139:        blk.15.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  145:             blk.16.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  146:             blk.16.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  147:             blk.16.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  148:        blk.16.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  154:             blk.17.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  155:             blk.17.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  156:             blk.17.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  157:        blk.17.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  163:             blk.18.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  164:             blk.18.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  165:             blk.18.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  166:        blk.18.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  172:             blk.19.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  173:             blk.19.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  174:             blk.19.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  175:        blk.19.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  181:             blk.20.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  182:             blk.20.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  183:             blk.20.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  184:        blk.20.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  190:             blk.21.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  191:             blk.21.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  192:             blk.21.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  193:        blk.21.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  199:             blk.22.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  200:             blk.22.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  201:             blk.22.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  202:        blk.22.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  208:             blk.23.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  209:             blk.23.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  210:             blk.23.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  211:        blk.23.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  217:             blk.24.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  218:             blk.24.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  219:             blk.24.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  220:        blk.24.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  226:             blk.25.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  227:             blk.25.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  228:             blk.25.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  229:        blk.25.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  235:             blk.26.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  236:             blk.26.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  237:             blk.26.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  238:        blk.26.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  244:             blk.27.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  245:             blk.27.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  246:             blk.27.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  247:        blk.27.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  253:             blk.28.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  254:             blk.28.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  255:             blk.28.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  256:        blk.28.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  262:             blk.29.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  263:             blk.29.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  264:             blk.29.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  265:        blk.29.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  271:             blk.30.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  272:             blk.30.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  273:             blk.30.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  274:        blk.30.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  280:             blk.31.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  281:             blk.31.attn_k.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  282:             blk.31.attn_v.weight q8_0     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  283:        blk.31.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q8_0     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q8_0     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  289:               output_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  290:                    output.weight q8_0     [  4096, 32000,     1,     1 ]\n",
      "llama_model_loader: - kv   0:                       general.architecture str     \n",
      "llama_model_loader: - kv   1:                               general.name str     \n",
      "llama_model_loader: - kv   2:                       llama.context_length u32     \n",
      "llama_model_loader: - kv   3:                     llama.embedding_length u32     \n",
      "llama_model_loader: - kv   4:                          llama.block_count u32     \n",
      "llama_model_loader: - kv   5:                  llama.feed_forward_length u32     \n",
      "llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     \n",
      "llama_model_loader: - kv   7:                 llama.attention.head_count u32     \n",
      "llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     \n",
      "llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     \n",
      "llama_model_loader: - kv  10:                       llama.rope.freq_base f32     \n",
      "llama_model_loader: - kv  11:                          general.file_type u32     \n",
      "llama_model_loader: - kv  12:                       tokenizer.ggml.model str     \n",
      "llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     \n",
      "llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     \n",
      "llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     \n",
      "llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32     \n",
      "llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32     \n",
      "llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32     \n",
      "llama_model_loader: - kv  19:               general.quantization_version u32     \n",
      "llama_model_loader: - type  f32:   65 tensors\n",
      "llama_model_loader: - type q8_0:  226 tensors\n",
      "llm_load_print_meta: format           = GGUF V2 (latest)\n",
      "llm_load_print_meta: arch             = llama\n",
      "llm_load_print_meta: vocab type       = SPM\n",
      "llm_load_print_meta: n_vocab          = 32000\n",
      "llm_load_print_meta: n_merges         = 0\n",
      "llm_load_print_meta: n_ctx_train      = 32768\n",
      "llm_load_print_meta: n_embd           = 4096\n",
      "llm_load_print_meta: n_head           = 32\n",
      "llm_load_print_meta: n_head_kv        = 8\n",
      "llm_load_print_meta: n_layer          = 32\n",
      "llm_load_print_meta: n_rot            = 128\n",
      "llm_load_print_meta: n_gqa            = 4\n",
      "llm_load_print_meta: f_norm_eps       = 0.0e+00\n",
      "llm_load_print_meta: f_norm_rms_eps   = 1.0e-05\n",
      "llm_load_print_meta: n_ff             = 14336\n",
      "llm_load_print_meta: freq_base_train  = 10000.0\n",
      "llm_load_print_meta: freq_scale_train = 1\n",
      "llm_load_print_meta: model type       = 7B\n",
      "llm_load_print_meta: model ftype      = mostly Q8_0\n",
      "llm_load_print_meta: model params     = 7.24 B\n",
      "llm_load_print_meta: model size       = 7.17 GiB (8.50 BPW) \n",
      "llm_load_print_meta: general.name   = mistralai_mistral-7b-instruct-v0.1\n",
      "llm_load_print_meta: BOS token = 1 '<s>'\n",
      "llm_load_print_meta: EOS token = 2 '</s>'\n",
      "llm_load_print_meta: UNK token = 0 '<unk>'\n",
      "llm_load_print_meta: LF token  = 13 '<0x0A>'\n",
      "llm_load_tensors: ggml ctx size =    0.09 MB\n",
      "llm_load_tensors: mem required  = 7338.73 MB\n",
      "...................................................................................................\n",
      "llama_new_context_with_model: n_ctx      = 2048\n",
      "llama_new_context_with_model: freq_base  = 10000.0\n",
      "llama_new_context_with_model: freq_scale = 1\n",
      "llama_new_context_with_model: kv self size  =  256.00 MB\n",
      "llama_new_context_with_model: compute buffer total size = 8.31 MB\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "**************************************************\n",
      "Question 1: \n",
      "Language: portuguese\n",
      "Question: \n",
      "Em qual região ocular células caliciformes são fisiologicamente encontradas?\n",
      "a)Córnea.\n",
      "b)Limbo corneoescleral.\n",
      "c)Linha cinzenta.\n",
      "d)Prega semilunar.\n",
      "Test #0: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #1: \n",
      "{'response': 'a'}\n",
      "Test #2: \n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #3: \n",
      "except\n",
      "except\n",
      "{'response': 'c'}\n",
      "Test #4: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #5: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #1: \n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #2: \n",
      "{'response': 'a'}\n",
      "Test #3: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'c'}\n",
      "Test #4: \n",
      "{'response': 'b'}\n",
      "Test #5: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #6: \n",
      "except\n",
      "except\n",
      "{'response': 'a', 'explanation': 'A ordem das três denominações celulares encontradas no epitélio da córnea é, iniciando pelo mais superficial, seguido do intermediário e do profundo: Plana (Epitélio basal), Alada (Epitélio alado) e Basal (Epitélio basal)'}\n",
      "Test #7: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'A'}\n",
      "Test #8: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #9: \n",
      "{'response': 'a'}\n",
      "Test #10: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Language: spanish\n",
      "Question: \n",
      "Ordene los tres nombres de células que se encuentran en el epitelio corneal, comenzando con el má superficial, seguidos por el intermedio y lo profundo.\n",
      "a) Plana, alada, basal.\n",
      "b) Alada, basal, plana.\n",
      "c) Basal, plana, alada.\n",
      "d) Alada, plana, basal.\n",
      "Test #0: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #1: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #2: \n",
      "{'response': 'd'}\n",
      "Test #3: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #4: \n",
      "except\n",
      "except\n",
      "{'response': 'c'}\n",
      "Test #5: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #6: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #7: \n",
      "{'response': 'A'}\n",
      "Test #8: \n",
      "except\n",
      "{'response': 'A'}\n",
      "Test #9: \n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #10: \n",
      "{'response': 'a'}\n",
      "Language: english\n",
      "Question: \n",
      "Order the three cell names found in the corneal epithelium, starting with the most superficial, followed by the intermediate and the deep.\n",
      "a) Flat, wing, basal.\n",
      "b) wing, basal, flat.\n",
      "c) Basal, flat, wing.\n",
      "d) wing, flat, basal.\n",
      "Test #0: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #1: \n",
      "{'response': 'c'}\n",
      "Test #2: \n",
      "except\n",
      "{'response': 'A'}\n",
      "Test #3: \n",
      "{'response': 'A'}\n",
      "Test #4: \n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #5: \n",
      "{'response': 'a'}\n",
      "Test #6: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #7: \n",
      "except\n",
      "except\n",
      "{'response': 'A'}\n",
      "Test #8: \n",
      "{'response': 'a'}\n",
      "Test #9: \n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #10: \n",
      "except\n",
      "{'response': 'A'}\n",
      "Language: tagalog\n",
      "Question: \n",
      "Mag -order ng tatlong mga pangalan ng cell na matatagpuan sa corneal epithelium, na nagsisimula sa pinaka mababaw, na sinusundan ng intermediate at malalim.\n",
      "a) Flat, wing, basal.\n",
      "b) wing, basal, flat.\n",
      "c) Basal, flat, wing.\n",
      "d) wing, flat, basal.\n",
      "Test #0: \n",
      "{'response': 'wing, flat, basal.'}\n",
      "Test #1: \n",
      "{'response': 'd'}\n",
      "Test #2: \n",
      "except\n",
      "{'response': 'A', 'description': 'In Portuguese, the cells found in the corneal epithelium starting from the outermost layer, intermediate and deep are called flat, wing, and basal respectively.'}\n",
      "Test #3: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #4: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #5: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #6: \n",
      "except\n",
      "except\n",
      "{'response': 'a', 'explanation': 'The three cells in the corneal epithelium that are tagged starting from the base to the top and are linked to each other are flat, wing, and basal.'}\n",
      "Test #7: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'c'}\n",
      "Test #8: \n",
      "except\n",
      "{'response': 'b'}\n",
      "Test #9: \n",
      "{'response': 'b'}\n",
      "Test #10: \n",
      "{'response': 'A'}\n",
      "**************************************************\n",
      "**************************************************\n",
      "Question 4: \n",
      "Language: portuguese\n",
      "Question: \n",
      "Sobre a membrana de Descemet da córnea, é correto afirmar:\n",
      "a)As células endoteliais não participam da sua formação.\n",
      "b)Sua espessura no adulto é de cerca de 30 µm.\n",
      "c)Sua porção mais anterior é de origem embrionária.\n",
      "d)Sua espessura reduz-se com a idade.\n",
      "Test #0: \n",
      "{'response': 'b'}\n",
      "Test #1: \n",
      "{'response': 'b'}\n",
      "Test #2: \n",
      "except\n",
      "except\n",
      "{'response': 'b'}\n",
      "Test #3: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'c', 'reasoning': \"The Descemet's membrane is formed from the lens vesicles in the embryo, not from endothelial cells.\"}\n",
      "Test #4: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'b'}\n",
      "Test #5: \n",
      "except\n",
      "{'response': 'b'}\n",
      "Test #6: \n",
      "{'response': 'd'}\n",
      "Test #7: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a', 'description': 'As células endoteliais são as células que cobertem a parte vascular da membrana de Descemet da córnea. São elas as responsáveis pela produção dessa membrana.'}\n",
      "Test #8: \n",
      "except\n",
      "{'response': 'b'}\n",
      "Test #9: \n",
      "{'response': 'a'}\n",
      "Test #10: \n",
      "except\n",
      "except\n",
      "{'response': 'B'}\n",
      "Language: spanish\n",
      "Question: \n",
      "Con respecto a la membrana de la córnea de Descemet, es correcto declarar:\n",
      "a) Las células endoteliales no participan en su formación.\n",
      "b) Su grosor en el adulto es de aproximadamente 30 µm.\n",
      "c) Su porción más anterior es de origen embrionario.\n",
      "d) Su grosor se reduce con la edad.\n",
      "Test #0: \n",
      "{'response': 'b'}\n",
      "Test #1: \n",
      "{'response': 'b'}\n",
      "Test #2: \n",
      "{'response': 'a'}\n",
      "Test #3: \n",
      "except\n",
      "{'response': 'b'}\n",
      "Test #4: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a) Las células endoteliales no participan en su formación.'}\n",
      "Test #5: \n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #6: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #7: \n",
      "except\n",
      "except\n",
      "{'response': 'a', 'explanation': 'Las células endoteliales no participan en su formación.'}\n",
      "Test #8: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'b', 'question': 'Con respecto a la membrana de la córnea de Descemet, es correcto declarar: a) Las células endoteliales no participan en su formación. b) Su grosor en el adulto es de aproximadamente 30 µm. c) Su porción más anterior es de origen embrionario. d) Su grosor se reduce con la edad.'}\n",
      "Test #9: \n",
      "{'response': 'a'}\n",
      "Test #10: \n",
      "except\n",
      "except\n",
      "{'response': 'b'}\n",
      "Language: english\n",
      "Question: \n",
      "Regarding Descemet's membrane of the cornea, it is correct to state:\n",
      "a) Endothelial cells do not participate in its formation.\n",
      "b) Its thickness in the adult is about 30 µm.\n",
      "c) Its most anterior portion is of embryonic origin.\n",
      "d) Its thickness reduces with age.\n",
      "Test #0: \n",
      "except\n",
      "{'response': 'c'}\n",
      "Test #1: \n",
      "except\n",
      "{'response': 'd'}\n",
      "Test #2: \n",
      "{'response': 'c'}\n",
      "Test #3: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'A'}\n",
      "Test #4: \n",
      "{'response': 'B'}\n",
      "Test #5: \n",
      "{'response': 'a'}\n",
      "Test #6: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #7: \n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #8: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #9: \n",
      "except\n",
      "{'response': 'c'}\n",
      "Test #10: \n",
      "{'response': 'a'}\n",
      "Language: tagalog\n",
      "Question: \n",
      "Tungkol sa lamad ni Descemet ng kornea, tama itong sabihin:\n",
      "a) Ang mga endothelial cells ay hindi nakikilahok sa pagbuo nito.\n",
      "b) Ang kapal nito sa may sapat na gulang ay halos 30 µm.\n",
      "c) ang pinaka -nauuna na bahagi nito ay mula sa embryonic na pinagmulan.\n",
      "d) Ang kapal nito ay binabawasan sa edad.\n",
      "Test #0: \n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #1: \n",
      "{'response': 'a', 'explanation': \"Descemet's membrane is a specialized structure of the cornea that consists of cells called endothelial cells that do not allow blood to penetrate it.\"}\n",
      "Test #2: \n",
      "{'response': 'A'}\n",
      "Test #3: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'c', 'description': 'Descemet`s membrane is the clear, avascular tissue that separates the iris from the anterior lens capsule. It develops from the embryonic mesoderm.'}\n",
      "Test #4: \n",
      "{'response': 'b', 'explanation': 'The thickness of the cornea varies with age and ranges from approximately 30 to 35 microns in young adults.'}\n",
      "Test #5: \n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'E'}\n",
      "Test #6: \n",
      "except\n",
      "except\n",
      "{'response': 'B'}\n",
      "Test #7: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'a'}\n",
      "Test #8: \n",
      "except\n",
      "except\n",
      "except\n",
      "except\n",
      "{'response': 'c'}\n",
      "Test #5: \n",
      "{'response': 'C'}\n",
      "Test #6: \n"
     ]
    }
   ],
   "source": [
    "# Run evaluation:\n",
    "llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3d6a1141",
   "metadata": {},
   "source": [
    "#### See the results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9b331ddc",
   "metadata": {
    "height": 30
   },
   "outputs": [],
   "source": [
    "if N_REPETITIONS > 1:\n",
    "    df = pd.read_csv(f\"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}_{N_REPETITIONS}Repetitions.csv\")\n",
    "else:\n",
    "    df = pd.read_csv(f\"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}.csv\")\n",
    "\n",
    "df"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c276a11a",
   "metadata": {},
   "source": [
    "### Data Analysis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab1892c6",
   "metadata": {},
   "outputs": [],
   "source": [
    "TEMPERATURE = str(TEMPERATURE).replace('.', '_')\n",
    "\n",
    "run_analysis(model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, languages=LANGUAGES)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b6e6ac9f",
   "metadata": {},
   "outputs": [],
   "source": [
    "N_REPETITIONS = 1 if N_REPETITIONS < 1 else N_REPETITIONS\n",
    "pd.read_csv(f'results/results_{MODEL}_Temperature{TEMPERATURE}_Repetitions{N_REPETITIONS}/matches_results_{MODEL}.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6da1406a",
   "metadata": {},
   "outputs": [],
   "source": [
    "N_REPETITIONS = 1 if N_REPETITIONS < 1 else N_REPETITIONS\n",
    "pd.read_csv(f'results/results_{MODEL}_Temperature{TEMPERATURE}_Repetitions{N_REPETITIONS}/matches_by_theme_{MODEL}.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7955290d",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [conda env:nlp_bias_vpython=3_8_15]",
   "language": "python",
   "name": "conda-env-nlp_bias_vpython_3_8_15-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.15"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}