File size: 5,945 Bytes
d5bfab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import numpy as np
import json
import pdb
from matplotlib import pyplot as plt
import os

# from skimage.morphology import binary_dilation, binary_erosion
from scipy.ndimage import binary_dilation, binary_erosion, binary_hit_or_miss
import random

from ListSelEm import *
from Utils import Process, Change_Colour


def generate_inp_out_catB_Iteration(list_se_idx, k_iterate, **param):
    """
    """
    base_img = np.zeros((param['img_size'], param['img_size']), dtype=np.int32)
    sz = np.random.randint(3, 6)
    idx1 = np.random.randint(0, param['img_size'], size=sz)
    idx2 = np.random.randint(0, param['img_size'], size=sz)
    base_img[idx1, idx2] = 1

    for _ in range(2):
        idx = np.random.randint(0, 8)
        base_img = binary_dilation(base_img, list_se_3x3[idx])

    inp_img = np.array(base_img, copy=True)
    out_img = np.array(base_img, copy=True)

    for idx in range(2):
        out_img = binary_dilation(out_img, list_se_3x3[list_se_idx[idx]])

    for idx in range(2):
        out_img = binary_erosion(out_img, list_se_3x3[list_se_idx[idx]])

    for idx in range(k_iterate):
        out_img = binary_dilation(out_img, list_se_3x3[list_se_idx[-1]])

    for idx in range(k_iterate):
        out_img = binary_erosion(out_img, list_se_3x3[list_se_idx[-1]])

    return inp_img, out_img


def generate_one_task_CatB_Iteration(**param):
    """
    """
    number_subtasks = 3
    list_se_idx = np.random.randint(0, 8, 3)
    k_iterate = np.random.randint(2, 5)

    data_tot = []
    list_se_tot = []
    k_subtask = 0
    while k_subtask < number_subtasks:
        data_subtask = []
        k_example = 0
        list_se_subtask = np.array(list_se_idx, copy=True)
        for idx in [0, 1]:
            idx_tmp = np.random.randint(0, 8)
            list_se_subtask[idx] = idx_tmp

        while k_example < param['no_examples_per_task']:
            inp_img, out_img = generate_inp_out_catB_Iteration(list_se_subtask, k_iterate, **param)

            # Check if both input and output images are non-trivial
            FLAG = False
            if np.all(inp_img*1 == 1) or np.all(inp_img*1 == 0):
                FLAG = True
            elif np.all(out_img*1 == 1) or np.all(out_img*1 == 0):
                FLAG = True

            if FLAG:
                # If trivial regenerate the list of se's
                # And reset all variables!!
                data_subtask = []
                k_example = -1
                list_se_subtask = np.array(list_se_idx, copy=True)
                for idx in [0, 1]:
                    idx_tmp = np.random.randint(0, 8)
                    list_se_subtask[idx] = idx_tmp
            else:
                # If not trivial proceed.
                data_subtask.append((inp_img, out_img, k_subtask))
            k_example += 1

        data_tot += data_subtask
        list_se_tot.append(list_se_subtask)
        k_subtask += 1

    return data_tot, list_se_tot, k_iterate


def write_dict_json_CatB_Iteration(data, fname):
    """
    """
    dict_data = []
    for (inp, out, subtask) in data:
        inp = [[int(y) for y in x] for x in inp]
        out = [[int(y) for y in x] for x in out]
        dict_data.append({"input": inp, "output": out, "subtask": subtask})

    with open(fname, "w") as f:
        f.write(json.dumps(dict_data))


def write_solution_CatB_Iteration(list_se_idx, k_iterate, fname):
    """
    """
    with open(fname, 'w') as f:
        for list_se_idx_subtask in list_se_idx:
            f.write("Subtask \n")
            f.write("-------- \n")
            i = 0
            while i < 2:
                f.write("Dilation SE{}\n".format(list_se_idx_subtask[i]+1))
                i += 1
            i = 0
            while i < 2:
                f.write(" Erosion SE{}\n".format(list_se_idx_subtask[i]+1))
                i += 1
            i = 2
            f.write("Iterate {} Dilation SE{}\n".format(k_iterate, list_se_idx_subtask[i]+1))
            f.write("Iterate {}  Erosion SE{}\n".format(k_iterate, list_se_idx_subtask[i]+1))
            f.write("\n")


def write_solution_CatB_Iteration_json(list_se_idx, k_iterate, fname):
    """
    Solution written in format:
    subtask - 
    n_iterate -
    op - Dilation/Erosion/Color_Change
    SE = SE0-SE7
    """
    data = []
    subtask = 0
    for list_se_idx_subtask in list_se_idx:
        i = 0
        while i < 2:
            data.append((subtask, 1, 'Dilation', 'SE{}'.format(list_se_idx_subtask[i]+1)))
            i += 1
        i = 0
        while i < 2:
            data.append((subtask, 1, 'Erosion', 'SE{}'.format(list_se_idx_subtask[i]+1)))
            i += 1
        data.append((subtask, k_iterate, 'Dilation', 'SE{}'.format(list_se_idx_subtask[i]+1)))
        data.append((subtask, k_iterate, 'Erosion', 'SE{}'.format(list_se_idx_subtask[i]+1)))
        subtask += 1

    with open(fname, "w") as f:
        f.write(json.dumps(data))


def generate_100_tasks_CatB_Iteration(seed, **param):
    """
    """
    np.random.seed(seed)

    os.makedirs("./Dataset/CatB_Iteration", exist_ok=True)

    for task_no in range(100):
        data, list_se_idx, k_iterate = generate_one_task_CatB_Iteration(**param)
        fname = './Dataset/CatB_Iteration/Task{:03d}.json'.format(task_no)
        write_dict_json_CatB_Iteration(data, fname)

        fname = './Dataset/CatB_Iteration/Task{:03d}_soln.txt'.format(task_no)
        write_solution_CatB_Iteration(list_se_idx, k_iterate, fname)

        fname = './Dataset/CatB_Iteration/Task{:03d}_soln.json'.format(task_no)
        write_solution_CatB_Iteration_json(list_se_idx, k_iterate, fname)


if __name__ == "__main__":
    param = {}
    param['img_size'] = 15
    param['se_size'] = 5  # Size of the structuring element
    param['seq_length'] = 4  # Number of primitives would be 2*param['seq_length']
    param['no_examples_per_task'] = 4
    param['no_colors'] = 3

    generate_100_tasks_CatB_Iteration(32, **param)