File size: 5,838 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import numpy as np
import json
import pdb
from matplotlib import pyplot as plt
import os
# from skimage.morphology import binary_dilation, binary_erosion
from scipy.ndimage import binary_dilation, binary_erosion, binary_hit_or_miss
import random
from ListSelEm import *
from Utils import Process, Change_Colour
def generate_inp_out_catB_Sequence(list_se_idx, **param):
"""
"""
base_img = np.zeros((param['img_size'], param['img_size']), dtype=np.int32)
sz = np.random.randint(3, 6)
idx1 = np.random.randint(0, param['img_size'], size=sz)
idx2 = np.random.randint(0, param['img_size'], size=sz)
base_img[idx1, idx2] = 1
for _ in range(2):
idx = np.random.randint(0, 8)
base_img = binary_dilation(base_img, list_se_3x3[idx])
inp_img = np.array(base_img, copy=True)
out_img = np.array(base_img, copy=True)
for idx in range(2):
out_img = binary_dilation(out_img, list_se_3x3[list_se_idx[idx]])
for idx in range(2):
out_img = binary_erosion(out_img, list_se_3x3[list_se_idx[idx]])
for idx in range(2, 4):
out_img = binary_dilation(out_img, list_se_3x3[list_se_idx[idx]])
for idx in range(2, 4):
out_img = binary_erosion(out_img, list_se_3x3[list_se_idx[idx]])
return inp_img, out_img
def generate_one_task_CatB_Sequence(**param):
"""
"""
number_subtasks = 3
list_se_idx = np.random.randint(0, 8, 4)
data_tot = []
list_se_tot = []
k_subtask = 0
while k_subtask < number_subtasks:
data_subtask = []
k_example = 0
list_se_subtask = np.array(list_se_idx, copy=True)
for idx in [0, 1]:
idx_tmp = np.random.randint(0, 8)
list_se_subtask[idx] = idx_tmp
while k_example < param['no_examples_per_task']:
inp_img, out_img = generate_inp_out_catB_Sequence(list_se_subtask, **param)
# Check if both input and output images are non-trivial
FLAG = False
if np.all(inp_img*1 == 1) or np.all(inp_img*1 == 0):
FLAG = True
elif np.all(out_img*1 == 1) or np.all(out_img*1 == 0):
FLAG = True
if FLAG:
# If trivial regenerate the list of se's
# And reset all variables!!
data_subtask = []
k_example = -1
list_se_subtask = np.array(list_se_idx, copy=True)
for idx in [0, 1]:
idx_tmp = np.random.randint(0, 8)
list_se_subtask[idx] = idx_tmp
else:
# If not trivial proceed.
data_subtask.append((inp_img, out_img, k_subtask))
k_example += 1
data_tot += data_subtask
list_se_tot.append(list_se_subtask)
k_subtask += 1
return data_tot, list_se_tot
def write_dict_json_CatB_Sequence(data, fname):
"""
"""
dict_data = []
for (inp, out, subtask) in data:
inp = [[int(y) for y in x] for x in inp]
out = [[int(y) for y in x] for x in out]
dict_data.append({"input": inp, "output": out, "subtask": subtask})
with open(fname, "w") as f:
f.write(json.dumps(dict_data))
def write_solution_CatB_Sequence(list_se_idx, fname):
"""
"""
with open(fname, 'w') as f:
for list_se_idx_subtask in list_se_idx:
f.write("Subtask \n")
f.write("-------- \n")
i = 0
while i < 2:
f.write("Dilation SE{}\n".format(list_se_idx_subtask[i]+1))
i += 1
i = 0
while i < 2:
f.write(" Erosion SE{}\n".format(list_se_idx_subtask[i]+1))
i += 1
i = 2
while i < 4:
f.write("Dilation SE{}\n".format(list_se_idx_subtask[i]+1))
i += 1
i = 2
while i < 4:
f.write(" Erosion SE{}\n".format(list_se_idx_subtask[i]+1))
i += 1
f.write("\n")
def write_solution_CatB_Sequence_json(list_se_idx, fname):
"""
"""
data = []
subtask = 0
for list_se_idx_subtask in list_se_idx:
i = 0
while i < 2:
data.append((subtask, "Dilation", "SE{}".format(list_se_idx_subtask[i]+1)))
i += 1
i = 0
while i < 2:
data.append((subtask, "Erosion", "SE{}".format(list_se_idx_subtask[i]+1)))
i += 1
i = 2
while i < 4:
data.append((subtask, "Dilation", "SE{}".format(list_se_idx_subtask[i]+1)))
i += 1
i = 2
while i < 4:
data.append((subtask, "Erosion", "SE{}".format(list_se_idx_subtask[i]+1)))
i += 1
subtask += 1
with open(fname, "w") as f:
f.write(json.dumps(data))
def generate_100_tasks_CatB_Sequence(seed, **param):
"""
"""
np.random.seed(seed)
os.makedirs("./Dataset/CatB_Sequence", exist_ok=True)
for task_no in range(100):
data, list_se_idx = generate_one_task_CatB_Sequence(**param)
fname = './Dataset/CatB_Sequence/Task{:03d}.json'.format(task_no)
write_dict_json_CatB_Sequence(data, fname)
fname = './Dataset/CatB_Sequence/Task{:03d}_soln.txt'.format(task_no)
write_solution_CatB_Sequence(list_se_idx, fname)
fname = './Dataset/CatB_Sequence/Task{:03d}_soln.json'.format(task_no)
write_solution_CatB_Sequence_json(list_se_idx, fname)
if __name__ == "__main__":
param = {}
param['img_size'] = 15
param['se_size'] = 5 # Size of the structuring element
param['seq_length'] = 4 # Number of primitives would be 2*param['seq_length']
param['no_examples_per_task'] = 4
param['no_colors'] = 3
generate_100_tasks_CatB_Sequence(32, **param)
|