File size: 2,746 Bytes
d5bfab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/python

"""
"""

import os.path
import sys
import numpy as np
import json
import pdb
from matplotlib import pyplot as plt
import os
from ast import literal_eval

# from skimage.morphology import binary_dilation, binary_erosion
from scipy.ndimage import binary_dilation, binary_erosion, binary_hit_or_miss
import random

from ListSelEm import *
from Utils import Process, Change_Colour

def write_output_json(data):
    """
    """
    dict_data = []
    for tmp in data:
        if len(tmp.shape) == 2:
            out = [[int(y) for y in x] for x in tmp]
        elif len(tmp.shape) == 3:
            out = [[[int(x3) for x3 in x2] for x2 in x1] for x1 in tmp]
        dict_data.append({"input": out})

    print(json.dumps(dict_data))

def perform_op(fname, list_ops):
    def _perform_task(img, k_iterate, op, se):
        for _ in range(k_iterate):
            list_se = ['SE1', 'SE2', 'SE3', 'SE4', 'SE5', 'SE6', 'SE7', 'SE8']
            if op == 'Dilation':
                list_se_idx = list_se.index(se)
                img = binary_dilation(img, list_se_3x3[list_se_idx])
            elif op == 'Erosion':
                list_se_idx = list_se.index(se)
                img = binary_erosion(img, list_se_3x3[list_se_idx])
            elif op == 'HitOrMiss':
                list_se_idx = list_se.index(se)
                tmp_img = binary_hit_or_miss(img, list_se_3x3[list_se_idx])
                img[tmp_img] = 2  # Add another color
                img = Process(img, num_colors=2)
            elif op == 'ChangeColor':
                img = Change_Colour(img, np.array(se, dtype=np.int32))
        return img

    # Load the dataset.
    with open(fname, 'r') as f:
        data = json.load(f)

    out = []
    for d in data:
        img = np.array(d['input'], dtype=np.int32)
        if len(img.shape) == 2:
            sx, sy = img.shape
            img = img.reshape((sx, sy, 1))
        for band, k_iterate, op, se in list_ops:
            if op != 'HitOrMiss' and op != 'ChangeColor':
                img[:, :, band-1] = _perform_task(img[:, :, band-1], k_iterate, op, se)
            elif op == 'HitOrMiss':
                img = _perform_task(img[:, :, band-1], k_iterate, op, se)
            else:
                img = _perform_task(img, k_iterate, op, se)
        img = img*1
        out.append(img)
    write_output_json(out)
        


if __name__ == '__main__':
    fname = sys.argv[1]
    list_ops = []
    for arg in sys.argv[2:]:
        band, op, se, k_iterate = str(arg).split("-")
        band = int(band)
        k_iterate = int(k_iterate)
        if op == 'ChangeColor':
            se = np.array(literal_eval(se))
        list_ops.append((band, k_iterate, op, se))

    perform_op(fname, list_ops)