File size: 59,696 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "929a1d7b-51a8-44ed-ab3b-8b2a2baa31dc",
"metadata": {},
"outputs": [],
"source": [
"import arc_json_model as ajm\n",
"from visualize import ajm_image_show\n",
"\n",
"ajm.Image.show = ajm_image_show"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "bcc018d5-5c3e-4acc-a9fd-e670d8a21c27",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import numpy as np\n",
"from torchvision import datasets\n",
"import torchvision.transforms as transforms\n",
"from torchsummary import summary\n",
"from tqdm import tqdm\n",
"\n",
"\n",
"device = torch.device(\"mps\")\n",
"#device = torch.device(\"cuda\")\n",
"#device = torch.device(\"cpu\")\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "fbaa81fe-7682-4cb3-9f57-fe94d5dd4fa4",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAHqCAYAAACN266QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjHElEQVR4nO3de3BU9fnH8c9mIZuIycqdRBJuChEQFBAMiDdQy2QQdUTUOEai44wTFMrIKGVsYCgGbEu9IYJ1wKrcREFlxIgoIEUlgFHwwkVFUkDQDuxClEV3z++PTvPrNhfyhGzOLn2/Zr5/7MmePc9sL2/OOZuNx3EcRwAAoF6S3B4AAIBEQjgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDiBONK5c2fdddddbo9R5corr9SVV17p9hhAXCGcgMGmTZs0depUHT161O1R6u3o0aO699571bZtW7Vo0UJXXXWVtm3b5vZYQMLy8F21QP396U9/0qRJk/Ttt9+qc+fOjf76oVBISUlJat68eaO8XiQS0dChQ/Xpp59q0qRJatOmjZ555hlVVFRo69atOv/88+vc/+TJk5Kk5OTkRpkHOBM0c3sA4EwViUR08uRJpaSk1Hsfn8/XqDMsX75cmzZt0iuvvKKbb75ZknTLLbeoe/fuKi4u1qJFi+rcn2AC1XGpFqinqVOnatKkSZKkLl26yOPxyOPxaO/evZIkj8ejcePG6eWXX1avXr3k8/n09ttvS/rXmergwYPVunVrpaamqn///lq+fHm1Y/z3Pc6FCxfK4/Ho73//uyZOnFh1ufXGG2/UDz/8cMqZly9frvbt2+umm26q2ta2bVvdcsstev311xUKherc/7/vca5bt04ej0fLli3TjBkz1LFjR6WkpGjYsGHas2fPKecBzgSccQL1dNNNN2nXrl1avHix/vKXv6hNmzaS/hWif3vvvfe0bNkyjRs3Tm3atKm6nPvEE0/o+uuvV35+vk6ePKklS5Zo9OjRWrVqlfLy8k557Pvvv18tW7ZUcXGx9u7dq8cff1zjxo3T0qVL69zvk08+Ub9+/ZSUFP1v5IEDB2r+/PnatWuXLrzwQuM7Ic2cOVNJSUl68MEHFQgE9Nhjjyk/P18ff/yx+bWAREM4gXrq06eP+vXrp8WLF+uGG26o8R7nzp07tX37dvXs2TNq+65du5Samlr1eNy4cerXr59mz55dr3C2bt1a77zzjjwej6R/XQZ+8sknFQgE5Pf7a93v4MGDuvzyy6ttz8jIkCQdOHCgQeE8ceKEysvLqy7ltmzZUuPHj9eOHTvUu3dv8+sBiYRLtUAjuuKKK6pFU1JUNI8cOaJAIKChQ4fW+9Ot9957b1U0JWno0KEKh8P67rvv6tzv559/rvG+6b/vu/7888/1Ov5/Gzt2bNT9z6FDh0qSvvnmmwa9HpBIOOMEGlGXLl1q3L5q1Sr94Q9/UHl5edR9xf+MYV2ys7OjHrds2VLSvyJcl9TU1BrvY544caLq5w3R0HmAMwFnnEAjqilEH3zwga6//nqlpKTomWee0VtvvaU1a9bo9ttvV31/G8zr9da4/VT7Z2Rk6ODBg9W2/3tbZmZmvY7fWPMAZwLOOAGD+p4h/qdXX31VKSkpKi0tjbpsumDBgsYcrUYXXXSRPvjgA0UikagPCH388cc666yz1L1795jPAJxpOOMEDFq0aCFJpm8O8nq98ng8CofDVdv27t2rlStXNvJ01d188806dOiQXnvttaptP/74o1555RWNHDmy0X9vFPhfwBknYNC/f39J0pQpU3TrrbeqefPmGjlyZFVQa5KXl6fZs2frN7/5jW6//XYdPnxYc+bM0XnnnafPPvsspvPefPPNuvTSSzV27Fh98cUXVd8cFA6HNW3atJgeGzhTEU7A4JJLLtH06dP17LPP6u2331YkEtG3335bZzivvvpqPf/885o5c6YmTJigLl26aNasWdq7d2/Mw+n1evXWW29p0qRJevLJJ/Xzzz/rkksu0cKFC9WjR4+YHhs4U/FdtQAAGHCPEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGDT573FGIhEdOHBAaWlpDfr6MgAAYsFxHB07dkyZmZnV/obtf2rycB44cEBZWVlNfVgAAOqloqJCHTt2rPXnTX6pNi0trakPCQBAvZ2qU00eTi7PAgDi2ak6xYeDAAAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAQYPCOWfOHHXu3FkpKSkaNGiQNm/e3NhzAQAQl8zhXLp0qSZOnKji4mJt27ZNffv21XXXXafDhw/HYj4AAOKLYzRw4ECnqKio6nE4HHYyMzOdkpKSeu0fCAQcSSwWi8VixeUKBAJ1dsx0xnny5Elt3bpVw4cPr9qWlJSk4cOH68MPP7S8FAAACamZ5ck//vijwuGw2rdvH7W9ffv2+uqrr2rcJxQKKRQKVT0OBoMNGBMAgPgQ80/VlpSUyO/3V62srKxYHxIAgJgxhbNNmzbyer06dOhQ1PZDhw6pQ4cONe4zefJkBQKBqlVRUdHwaQEAcJkpnMnJyerfv7/Wrl1btS0SiWjt2rXKzc2tcR+fz6f09PSoBQBAojLd45SkiRMnqqCgQAMGDNDAgQP1+OOPq7KyUmPHjo3FfAAAxBVzOMeMGaMffvhBv//97/X999/roosu0ttvv13tA0MAAJyJPI7jOE15wGAwKL/f35SHBACg3gKBQJ23FfmuWgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwMIdzw4YNGjlypDIzM+XxeLRy5coYjAUAQHwyh7OyslJ9+/bVnDlzYjEPAABxrZl1hxEjRmjEiBGxmAUAgLjHPU4AAAzMZ5xWoVBIoVCo6nEwGIz1IQEAiJmYn3GWlJTI7/dXraysrFgfEgCAmIl5OCdPnqxAIFC1KioqYn1IAABiJuaXan0+n3w+X6wPAwBAkzCH8/jx49qzZ0/V42+//Vbl5eVq1aqVsrOzG3U4AADijmP0/vvvO5KqrYKCgnrtHwgEatyfxWKxWKx4WIFAoM6OeRzHcdSEgsGg/H5/Ux4SAIB6CwQCSk9Pr/Xn/B4nAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADEzhLCkp0SWXXKK0tDS1a9dON9xwg3bu3Bmr2QAAiDumcK5fv15FRUX66KOPtGbNGv3yyy+69tprVVlZGav5AACIKx7HcZyG7vzDDz+oXbt2Wr9+vS6//PJ67RMMBuX3+xt6SAAAYioQCCg9Pb3Wnzc73ReXpFatWtX6nFAopFAoVPU4GAyeziEBAHBVgz8cFIlENGHCBA0ZMkS9e/eu9XklJSXy+/1VKysrq6GHBADAdQ2+VHvfffdp9erV2rhxozp27Fjr82o64ySeAIB4FZNLtePGjdOqVau0YcOGOqMpST6fTz6fryGHAQAg7pjC6TiO7r//fq1YsULr1q1Tly5dYjUXAABxyRTOoqIiLVq0SK+//rrS0tL0/fffS5L8fr9SU1NjMiAAAPHEdI/T4/HUuH3BggW666676vUa/DoKACCeNeo9ztP4lU8AAM4IfFctAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwMP1ZMeB0OXvcnqD+POe5PUH9JMp7mijvJ3AqnHECAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAwBTOuXPnqk+fPkpPT1d6erpyc3O1evXqWM0GAEDcMYWzY8eOmjlzprZu3aotW7bo6quv1qhRo/T555/Haj4AAOKKx3Ec53ReoFWrVvrjH/+ou+++u17PDwaD8vv9p3NIJDBnj9sT1J/nPLcnqJ9EeU8T5f0EAoGA0tPTa/15s4a+cDgc1iuvvKLKykrl5uY29GUAAEgo5nBu375dubm5OnHihM4++2ytWLFCPXv2rPX5oVBIoVCo6nEwGGzYpAAAxAHzp2p79Oih8vJyffzxx7rvvvtUUFCgL774otbnl5SUyO/3V62srKzTGhgAADed9j3O4cOHq1u3bpo3b16NP6/pjJN4/u9KlPtxUuLck0uU9zRR3k8gZvc4/y0SiUSF8b/5fD75fL7TPQwAAHHBFM7JkydrxIgRys7O1rFjx7Ro0SKtW7dOpaWlsZoPAIC4Ygrn4cOHdeedd+rgwYPy+/3q06ePSktLdc0118RqPgAA4oopnM8//3ys5gAAICHwXbUAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYGD6e5zA6fKc5/YEZx7eU6BpccYJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAg9MK58yZM+XxeDRhwoRGGgcAgPjW4HCWlZVp3rx56tOnT2POAwBAXGtQOI8fP678/Hw999xzatmyZWPPBABA3GpQOIuKipSXl6fhw4ef8rmhUEjBYDBqAQCQqJpZd1iyZIm2bdumsrKyej2/pKRE06ZNMw8GAEA8Mp1xVlRUaPz48Xr55ZeVkpJSr30mT56sQCBQtSoqKho0KAAA8cDjOI5T3yevXLlSN954o7xeb9W2cDgsj8ejpKQkhUKhqJ/VJBgMyu/3N3xiAABiKBAIKD09vdafmy7VDhs2TNu3b4/aNnbsWOXk5Oihhx46ZTQBAEh0pnCmpaWpd+/eUdtatGih1q1bV9sOAMCZiG8OAgDAwHSPszFwjxMAEM9OdY+TM04AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBg+kPWwOly9rg9Qf15znN7gvpJlPc0Ud5P4FQ44wQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAICBKZxTp06Vx+OJWjk5ObGaDQCAuNPMukOvXr307rvv/v8LNDO/BAAACctcvWbNmqlDhw6xmAUAgLhnvse5e/duZWZmqmvXrsrPz9e+fftiMRcAAHHJdMY5aNAgLVy4UD169NDBgwc1bdo0DR06VDt27FBaWlqN+4RCIYVCoarHwWDw9CYGAMBFHsdxnIbufPToUXXq1EmzZ8/W3XffXeNzpk6dqmnTpjV4QJxZnD1uT1B/nvPcnqB+EuU9TZT3EwgEAkpPT6/156f16yjnnHOOunfvrj17av9f7uTJkxUIBKpWRUXF6RwSAABXnVY4jx8/rq+//loZGRm1Psfn8yk9PT1qAQCQqEzhfPDBB7V+/Xrt3btXmzZt0o033iiv16vbbrstVvMBABBXTB8O+sc//qHbbrtN//znP9W2bVtddtll+uijj9S2bdtYzQcAQFwxhXPJkiWxmgMAgITAd9UCAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAAD058VA06X5zy3Jzjz8J4CTYszTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABiYw7l//37dcccdat26tVJTU3XhhRdqy5YtsZgNAIC408zy5CNHjmjIkCG66qqrtHr1arVt21a7d+9Wy5YtYzUfAABxxRTOWbNmKSsrSwsWLKja1qVLl0YfCgCAeGW6VPvGG29owIABGj16tNq1a6eLL75Yzz33XKxmAwAg7pjC+c0332ju3Lk6//zzVVpaqvvuu08PPPCAXnjhhVr3CYVCCgaDUQsAgITlGDRv3tzJzc2N2nb//fc7l156aa37FBcXO5JYLBaLxUqIFQgE6myh6YwzIyNDPXv2jNp2wQUXaN++fbXuM3nyZAUCgapVUVFhOSQAAHHF9OGgIUOGaOfOnVHbdu3apU6dOtW6j8/nk8/na9h0AADEG8ul2s2bNzvNmjVzZsyY4ezevdt5+eWXnbPOOst56aWX6v0agUDA9dNwFovFYrFqW6e6VGsKp+M4zptvvun07t3b8fl8Tk5OjjN//nzT/oSTxWKxWPG8ThVOj+M4jppQMBiU3+9vykMCAFBvgUBA6enptf6c76oFAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAgSmcnTt3lsfjqbaKiopiNR8AAHGlmeXJZWVlCofDVY937Niha665RqNHj270wQAAiEemcLZt2zbq8cyZM9WtWzddccUVjToUAADxyhTO/3Ty5Em99NJLmjhxojweT63PC4VCCoVCVY+DwWBDDwkAgOsa/OGglStX6ujRo7rrrrvqfF5JSYn8fn/VysrKaughAQBwncdxHKchO1533XVKTk7Wm2++WefzajrjJJ4AgHgVCASUnp5e688bdKn2u+++07vvvqvXXnvtlM/1+Xzy+XwNOQwAAHGnQZdqFyxYoHbt2ikvL6+x5wEAIK6ZwxmJRLRgwQIVFBSoWbMGf7YIAICEZA7nu+++q3379qmwsDAW8wAAENca/OGghgoGg/L7/U15SAAA6u1UHw7iu2oBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwMAUznA4rEceeURdunRRamqqunXrpunTp8txnFjNBwBAXGlmefKsWbM0d+5cvfDCC+rVq5e2bNmisWPHyu/364EHHojVjAAAxA1TODdt2qRRo0YpLy9PktS5c2ctXrxYmzdvjslwAADEG9Ol2sGDB2vt2rXatWuXJOnTTz/Vxo0bNWLEiJgMBwBAvDGdcT788MMKBoPKycmR1+tVOBzWjBkzlJ+fX+s+oVBIoVCo6nEwGGz4tAAAuM0xWLx4sdOxY0dn8eLFzmeffeb87W9/c1q1auUsXLiw1n2Ki4sdSSwWi8ViJcQKBAJ1ttAUzo4dOzpPP/101Lbp06c7PXr0qHWfEydOOIFAoGpVVFS4/qawWCwWi1XbOlU4TZdqf/rpJyUlRd8W9Xq9ikQite7j8/nk8/kshwEAIG6Zwjly5EjNmDFD2dnZ6tWrlz755BPNnj1bhYWFsZoPAID4YrlUGwwGnfHjxzvZ2dlOSkqK07VrV2fKlClOKBSq92sEAgHXT8NZLBaLxaptnepSrcdxmvZrf4LBoPx+f1MeEgCAegsEAkpPT6/153xXLQAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAzM4Tx27JgmTJigTp06KTU1VYMHD1ZZWVksZgMAIO6Yw3nPPfdozZo1evHFF7V9+3Zde+21Gj58uPbv3x+L+QAAiC+OwU8//eR4vV5n1apVUdv79evnTJkypV6vEQgEHEksFovFYsXlCgQCdXasmQx+/fVXhcNhpaSkRG1PTU3Vxo0ba9wnFAopFApVPQ4Gg5ZDAgAQV0yXatPS0pSbm6vp06frwIEDCofDeumll/Thhx/q4MGDNe5TUlIiv99ftbKyshplcAAA3OBxHMex7PD111+rsLBQGzZskNfrVb9+/dS9e3dt3bpVX375ZbXn13TGSTwBAPEqEAgoPT291p+bLtVKUrdu3bR+/XpVVlYqGAwqIyNDY8aMUdeuXWt8vs/nk8/nsx4GAIC41ODf42zRooUyMjJ05MgRlZaWatSoUY05FwAAccl8qba0tFSO46hHjx7as2ePJk2apJSUFH3wwQdq3rz5KfcPBoPy+/0NHhgAgFg61aVa8xlnIBBQUVGRcnJydOedd+qyyy5TaWlpvaIJAECiM59xni7OOAEA8azRzzgBAPhfRjgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAZNHs4m/mMsAACYnKpTTR7OY8eONfUhAQCot1N1qsn/HmckEtGBAweUlpYmj8fTKK8ZDAaVlZWlioqKOv+GmtsSZU4pcWZlzsaXKLMmypxS4sz6vz6n4zg6duyYMjMzlZRU+3lls0Y7Yj0lJSWpY8eOMXnt9PT0uP4P+98SZU4pcWZlzsaXKLMmypxS4sz6vzyn3+8/5XP4cBAAAAaEEwAAgzMinD6fT8XFxfL5fG6PUqdEmVNKnFmZs/ElyqyJMqeUOLMyZ/00+YeDAABIZGfEGScAAE2FcAIAYEA4AQAwIJwAABgkfDjnzJmjzp07KyUlRYMGDdLmzZvdHqmaDRs2aOTIkcrMzJTH49HKlSvdHqlGJSUluuSSS5SWlqZ27drphhtu0M6dO90eq0Zz585Vnz59qn4BOjc3V6tXr3Z7rFOaOXOmPB6PJkyY4PYoUaZOnSqPxxO1cnJy3B6rVvv379cdd9yh1q1bKzU1VRdeeKG2bNni9lhROnfuXO099Xg8Kioqcnu0asLhsB555BF16dJFqamp6tatm6ZPnx6X3y1+7NgxTZgwQZ06dVJqaqoGDx6ssrKyJp0hocO5dOlSTZw4UcXFxdq2bZv69u2r6667TocPH3Z7tCiVlZXq27ev5syZ4/YodVq/fr2Kior00Ucfac2aNfrll1907bXXqrKy0u3RqunYsaNmzpyprVu3asuWLbr66qs1atQoff75526PVquysjLNmzdPffr0cXuUGvXq1UsHDx6sWhs3bnR7pBodOXJEQ4YMUfPmzbV69Wp98cUX+vOf/6yWLVu6PVqUsrKyqPdzzZo1kqTRo0e7PFl1s2bN0ty5c/X000/ryy+/1KxZs/TYY4/pqaeecnu0au655x6tWbNGL774orZv365rr71Ww4cP1/79+5tuCCeBDRw40CkqKqp6HA6HnczMTKekpMTFqeomyVmxYoXbY9TL4cOHHUnO+vXr3R6lXlq2bOn89a9/dXuMGh07dsw5//zznTVr1jhXXHGFM378eLdHilJcXOz07dvX7THq5aGHHnIuu+wyt8cwGz9+vNOtWzcnEom4PUo1eXl5TmFhYdS2m266ycnPz3dpopr99NNPjtfrdVatWhW1vV+/fs6UKVOabI6EPeM8efKktm7dquHDh1dtS0pK0vDhw/Xhhx+6ONmZIxAISJJatWrl8iR1C4fDWrJkiSorK5Wbm+v2ODUqKipSXl5e1H9f483u3buVmZmprl27Kj8/X/v27XN7pBq98cYbGjBggEaPHq127drp4osv1nPPPef2WHU6efKkXnrpJRUWFjbaH7doTIMHD9batWu1a9cuSdKnn36qjRs3asSIES5PFu3XX39VOBxWSkpK1PbU1NQmvULS5F/y3lh+/PFHhcNhtW/fPmp7+/bt9dVXX7k01ZkjEolowoQJGjJkiHr37u32ODXavn27cnNzdeLECZ199tlasWKFevbs6fZY1SxZskTbtm1r8vswFoMGDdLChQvVo0cPHTx4UNOmTdPQoUO1Y8cOpaWluT1elG+++UZz587VxIkT9bvf/U5lZWV64IEHlJycrIKCArfHq9HKlSt19OhR3XXXXW6PUqOHH35YwWBQOTk58nq9CofDmjFjhvLz890eLUpaWppyc3M1ffp0XXDBBWrfvr0WL16sDz/8UOedd16TzZGw4URsFRUVaceOHXF7n0uSevToofLycgUCAS1fvlwFBQVav359XMWzoqJC48eP15o1a6r9Kzme/OeZRZ8+fTRo0CB16tRJy5Yt09133+3iZNVFIhENGDBAjz76qCTp4osv1o4dO/Tss8/GbTiff/55jRgxQpmZmW6PUqNly5bp5Zdf1qJFi9SrVy+Vl5drwoQJyszMjLv39MUXX1RhYaHOPfdceb1e9evXT7fddpu2bt3aZDMkbDjbtGkjr9erQ4cORW0/dOiQOnTo4NJUZ4Zx48Zp1apV2rBhQ8z+BFxjSE5OrvpXZv/+/VVWVqYnnnhC8+bNc3my/7d161YdPnxY/fr1q9oWDoe1YcMGPf300wqFQvJ6vS5OWLNzzjlH3bt31549e9wepZqMjIxq/zi64IIL9Oqrr7o0Ud2+++47vfvuu3rttdfcHqVWkyZN0sMPP6xbb71VknThhRfqu+++U0lJSdyFs1u3blq/fr0qKysVDAaVkZGhMWPGqGvXrk02Q8Le40xOTlb//v21du3aqm2RSERr166N2/tc8c5xHI0bN04rVqzQe++9py5durg9kkkkElEoFHJ7jCjDhg3T9u3bVV5eXrUGDBig/Px8lZeXx2U0Jen48eP6+uuvlZGR4fYo1QwZMqTar0nt2rVLnTp1cmmiui1YsEDt2rVTXl6e26PU6qeffqr2h5u9Xq8ikYhLE51aixYtlJGRoSNHjqi0tFSjRo1qsmMn7BmnJE2cOFEFBQUaMGCABg4cqMcff1yVlZUaO3as26NFOX78eNS/3L/99luVl5erVatWys7OdnGyaEVFRVq0aJFef/11paWl6fvvv5f0rz/smpqa6vJ00SZPnqwRI0YoOztbx44d06JFi7Ru3TqVlpa6PVqUtLS0aveIW7RoodatW8fVveMHH3xQI0eOVKdOnXTgwAEVFxfL6/Xqtttuc3u0an77299q8ODBevTRR3XLLbdo8+bNmj9/vubPn+/2aNVEIhEtWLBABQUFatYsfv/vduTIkZoxY4ays7PVq1cvffLJJ5o9e7YKCwvdHq2a0tJSOY6jHj16aM+ePZo0aZJycnKa9v/3m+zzuzHy1FNPOdnZ2U5ycrIzcOBA56OPPnJ7pGref/99R1K1VVBQ4PZoUWqaUZKzYMECt0erprCw0OnUqZOTnJzstG3b1hk2bJjzzjvvuD1WvcTjr6OMGTPGycjIcJKTk51zzz3XGTNmjLNnzx63x6rVm2++6fTu3dvx+XxOTk6OM3/+fLdHqlFpaakjydm5c6fbo9QpGAw648ePd7Kzs52UlBSna9euzpQpU5xQKOT2aNUsXbrU6dq1q5OcnOx06NDBKSoqco4ePdqkM/BnxQAAMEjYe5wAALiBcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABj8HyidmhRCSWP+AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"filename = 'testdata/af902bf9.json'\n",
"#filename = 'testdata/62c24649.json'\n",
"#filename = 'testdata/a699fb00.json'\n",
"#filename = 'testdata/f76d97a5.json'\n",
"#filename = 'testdata/f5b8619d.json'\n",
"task = ajm.Task.load(filename)\n",
"image = task.pairs[0].input\n",
"image.show()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8e2d17ed-0262-4915-a6e6-a5459b5a09ab",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"len(train_input_output) 12\n",
"len(test_input_output) 4\n"
]
}
],
"source": [
"from color_xy import color_to_xy\n",
"\n",
"# TODO: get it to work with size 30x30\n",
"IMAGE_SIZE = 28\n",
"\n",
"def obfuscate_image(image: ajm.Image, offset: float) -> np.ndarray:\n",
" # empty image with size: IMAGE_SIZE x IMAGE_SIZE\n",
" # each pixel is an array with 1 value: [color], where the color is a float between 0 and 1\n",
" # the color 1.0 is used to indicate when a pixel is outside the visible area.\n",
" rows2 = []\n",
" for y in range(0,IMAGE_SIZE):\n",
" columns2 = [[1.0]] * IMAGE_SIZE\n",
" rows2.append(columns2)\n",
" # assign obfuscated values\n",
" for row_index, rows in enumerate(image.pixels):\n",
" for column_index, pixel in enumerate(rows):\n",
" obfuscated_pixel = (float(pixel) + offset * 10.0) % 10.0\n",
" value = float(obfuscated_pixel) / 11.0\n",
" rows2[row_index][column_index] = [value]\n",
" obfuscated_image = np.array(rows2)\n",
" return obfuscated_image\n",
"\n",
"def numpy_image_to_tensors(obfuscated_image: np.ndarray, device: torch.device) -> torch.Tensor:\n",
" tensors = torch.from_numpy(obfuscated_image)\n",
" #print(tensors)\n",
" # cast it to 32-bit floating point tensor\n",
" tensors = tensors.type('torch.FloatTensor')\n",
" #print(tensors)\n",
" #print(\"before\", tensors.shape)\n",
" # change layout from: rows -> columns -> obfuscated_pixel_array\n",
" # change layout to: obfuscated_pixel_array -> rows -> columns\n",
" tensors = tensors.permute(2, 0, 1)\n",
" #print(\"after\", tensors.shape)\n",
" tensors_on_device = tensors.to(device)\n",
" return tensors_on_device\n",
" \n",
"all_images = []\n",
"for pair in task.pairs:\n",
" all_images.append(pair.input)\n",
" all_images.append(pair.output)\n",
"\n",
"train_input_output = []\n",
"test_input_output = []\n",
"number_of_offsets = 4\n",
"for i in range(0, number_of_offsets):\n",
" offset = float(i) / float(number_of_offsets)\n",
" if i == 0:\n",
" offset = 0.0\n",
" if i == 1:\n",
" offset = 0.25\n",
" if i == 2:\n",
" offset = 0.5\n",
" if i == 3:\n",
" offset = 0.75\n",
" if i == 4:\n",
" offset = 0.125\n",
" if i == 5:\n",
" offset = 0.375\n",
" if i == 6:\n",
" offset = 0.625\n",
" if i == 7:\n",
" offset = 0.330823\n",
" if i == 8:\n",
" offset = 0.23\n",
" if i == 9:\n",
" offset = 0.893\n",
" if i == 10:\n",
" offset = 0.01111\n",
" if i == 11:\n",
" offset = 0.71313\n",
" if i == 12:\n",
" offset = 0.91555\n",
" if i == 13:\n",
" offset = 0.51717\n",
" \n",
" for pair in task.pairs:\n",
" input_image = obfuscate_image(pair.input, offset)\n",
" output_image = obfuscate_image(pair.output, offset)\n",
" input_tensors = numpy_image_to_tensors(input_image, device)\n",
" output_tensors = numpy_image_to_tensors(output_image, device)\n",
" input_output_offset = (input_tensors, output_tensors, offset)\n",
" if pair.pair_type == ajm.PairType.TRAIN:\n",
" train_input_output.append(input_output_offset)\n",
" else:\n",
" test_input_output.append(input_output_offset)\n",
"print(\"len(train_input_output)\", len(train_input_output))\n",
"print(\"len(test_input_output)\", len(test_input_output))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "45e2653e-3539-4b61-ade5-18a193c93616",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ConvAutoencoder(\n",
" (conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (t_conv1): ConvTranspose2d(32, 16, kernel_size=(2, 2), stride=(2, 2))\n",
" (t_conv2): ConvTranspose2d(16, 1, kernel_size=(2, 2), stride=(2, 2))\n",
")\n",
"----------------------------------------------------------------\n",
" Layer (type) Output Shape Param #\n",
"================================================================\n",
" Conv2d-1 [-1, 16, 30, 30] 160\n",
" MaxPool2d-2 [-1, 16, 15, 15] 0\n",
" Conv2d-3 [-1, 32, 15, 15] 4,640\n",
" MaxPool2d-4 [-1, 32, 7, 7] 0\n",
" ConvTranspose2d-5 [-1, 16, 14, 14] 2,064\n",
" ConvTranspose2d-6 [-1, 1, 28, 28] 65\n",
"================================================================\n",
"Total params: 6,929\n",
"Trainable params: 6,929\n",
"Non-trainable params: 0\n",
"----------------------------------------------------------------\n",
"Input size (MB): 0.00\n",
"Forward/backward pass size (MB): 0.23\n",
"Params size (MB): 0.03\n",
"Estimated Total Size (MB): 0.26\n",
"----------------------------------------------------------------\n"
]
}
],
"source": [
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"\n",
"# define the NN architecture\n",
"class ConvAutoencoder(nn.Module):\n",
" def __init__(self):\n",
" super(ConvAutoencoder, self).__init__()\n",
" ## encoder layers ##\n",
" # conv layer (depth from 2 --> 16), 3x3 kernels\n",
" self.conv1 = nn.Conv2d(1, 16, 3, padding=1) \n",
" # conv layer (depth from 16 --> 4), 3x3 kernels\n",
" self.conv2 = nn.Conv2d(16, 32, 3, padding=1)\n",
" # pooling layer to reduce x-y dims by two; kernel and stride of 2\n",
" self.pool = nn.MaxPool2d(2, 2)\n",
" \n",
" ## decoder layers ##\n",
" ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2\n",
" self.t_conv1 = nn.ConvTranspose2d(32, 16, 2, stride=2)\n",
" self.t_conv2 = nn.ConvTranspose2d(16, 1, 2, stride=2)\n",
"\n",
"\n",
" def forward(self, x):\n",
" ## encode ##\n",
" # add hidden layers with relu activation function\n",
" # and maxpooling after\n",
" x = F.relu(self.conv1(x))\n",
" x = self.pool(x)\n",
" # add second hidden layer\n",
" x = F.relu(self.conv2(x))\n",
" x = self.pool(x) # compressed representation\n",
" \n",
" ## decode ##\n",
" # add transpose conv layers, with relu activation function\n",
" x = F.relu(self.t_conv1(x))\n",
" # output layer (with sigmoid for scaling from 0 to 1)\n",
" x = F.sigmoid(self.t_conv2(x))\n",
" \n",
" return x\n",
"\n",
"# initialize the NN\n",
"model = ConvAutoencoder()\n",
"print(model)\n",
"summary(model,input_size=(1,30,30))\n",
"model = model.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "32898b91-a8f1-47f0-9a75-ea7917f05f72",
"metadata": {},
"outputs": [],
"source": [
"# specify loss function\n",
"criterion = nn.MSELoss()\n",
"#criterion = nn.L1Loss()\n",
"#criterion = nn.CrossEntropyLoss()\n",
"#criterion = nn.KLDivLoss()\n",
"#criterion = nn.BCELoss()\n",
"#criterion = nn.BCEWithLogitsLoss()\n",
"\n",
"# specify loss function\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=0.001)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "24fa3733-aaed-49a8-883b-408aac441ebf",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 44.88it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 1 \tTraining Loss: 0.206634\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 188.17it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 2 \tTraining Loss: 0.166242\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 184.55it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 3 \tTraining Loss: 0.093574\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 190.64it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 4 \tTraining Loss: 0.042907\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 191.49it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 5 \tTraining Loss: 0.037412\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 200.09it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 6 \tTraining Loss: 0.035057\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 195.69it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 7 \tTraining Loss: 0.030930\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 192.32it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 8 \tTraining Loss: 0.027219\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 184.89it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 9 \tTraining Loss: 0.023562\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:00<00:00, 191.68it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 10 \tTraining Loss: 0.019988\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"import random\n",
"#random.Random(42).shuffle(train_input_output)\n",
"\n",
"# number of epochs to train the model\n",
"n_epochs = 10\n",
"\n",
"for epoch in range(1, n_epochs+1):\n",
" # monitor training loss\n",
" train_loss = 0.0\n",
"\n",
" #random.Random(epoch).shuffle(train_input_output)\n",
" \n",
" ###################\n",
" # train the model #\n",
" ###################\n",
" for input_output_offset in tqdm(train_input_output):\n",
" input, expected_output, _ = input_output_offset\n",
" \n",
" # clear the gradients of all optimized variables\n",
" optimizer.zero_grad()\n",
" # forward pass: compute predicted outputs by passing inputs to the model\n",
"\n",
" outputs = model(input)\n",
" # calculate the loss\n",
" loss = criterion(outputs, expected_output)\n",
" # backward pass: compute gradient of the loss with respect to model parameters\n",
" loss.backward()\n",
" # perform a single optimization step (parameter update)\n",
" optimizer.step()\n",
" # update running training loss\n",
" train_loss += loss.item()*input.size(0)\n",
" \n",
" # print avg training statistics \n",
" train_loss = train_loss/len(train_input_output)\n",
" print('Epoch: {} \\tTraining Loss: {:.6f}'.format(\n",
" epoch, \n",
" train_loss\n",
" ))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2ed1d86b-8cce-4ce6-be89-7a2e7a325d23",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAHqCAYAAACna18/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHN0lEQVR4nO3deVyU5d4/8M+IMCzCJAjCBINbQW7kHuqDmoSQuZRpiyWm2bHA9fdYUhmap9BKs8Wj2aO4paknUbLC4wKYJzdAVDqKoBYKIpo6o6CjMdfvjx7mcWSAYbhvmRk/79frer2ae67vfV2T43y97u2rEEIIEBERkaSaNPYEiIiIHBETLBERkQyYYImIiGTABEtERCQDJlgiIiIZMMESERHJgAmWiIhIBkywREREMmCCJSIikgETLJEDycjIgEKhQEZGhnHb2LFj0apVq0ab093MzZHIETHBEpFZH374IbZs2dLY0yCyW0ywRA7u66+/Rn5+fr3jmGCJGqZpY0+AiACDwYBbt27B1dVV8n07OztLvk8iqhtXsEQSmj17NhQKBU6cOIFRo0bBy8sLPj4+mDJlCm7evGnsp1AoEB8fj2+++QYdOnSAUqlEWloaAKC4uBjjxo1Dy5YtoVQq0aFDB6xYsaLaWOfOncPw4cPh4eEBPz8/TJs2DXq9vlo/c+dgDQYDPvvsM3Tq1Amurq7w9fVFdHQ0srKyjPMrLy/HqlWroFAooFAoMHbsWGO81HMkckRcwRLJYNSoUWjVqhWSkpKwf/9+fP7557hy5QpWr15t7LN7925s3LgR8fHxaNGiBVq1aoULFy7gscceMyZgX19f/PTTTxg/fjx0Oh2mTp0KALhx4wYGDhyIoqIiTJ48GWq1GmvWrMHu3bstmt/48eOxcuVKxMTE4NVXX8Wff/6Jn3/+Gfv370f37t2xZs0avPrqq+jZsydee+01AEDbtm0B4J7NkcjuCSKSTGJiogAghg4darL9jTfeEADEkSNHhBBCABBNmjQRv/76q0m/8ePHi4CAAHHp0iWT7c8//7xQqVSioqJCCCHEokWLBACxceNGY5/y8nLRrl07AUCkp6cbt8fGxorg4GDj6927dwsAYvLkydXmbzAYjP/t4eEhYmNjq/WRY45EjoiHiIlkEBcXZ/J60qRJAIAff/zRuK1fv35o37698bUQAt999x2GDBkCIQQuXbpkbIMGDYJWq0VOTo5xPwEBAXj22WeN8e7u7sbVZm2+++47KBQKJCYmVntPoVDUGnuv5kjkCHiImEgGDz30kMnrtm3bokmTJvjtt9+M21q3bm3S5+LFi7h69SqWLVuGZcuWmd1vWVkZAOD3339Hu3btqiXEkJCQOud26tQpqNVqeHt7W/JRGmWORI6ACZboHjC3MnRzczN5bTAYAAAvvfQSYmNjze6nc+fO0k+uHuxhjkS2ggmWSAYFBQUmK9TCwkIYDIZan6jk6+sLT09PVFZWIjIystb9BwcHIy8vD0IIk+Rtyf2ubdu2xfbt23H58uVaV7Hm/lFwr+ZI5Ah4DpZIBosXLzZ5/cUXXwAAYmJiaoxxcnLCiBEj8N133yEvL6/a+xcvXjT+95NPPomSkhL885//NG6rqKio8bDtnUaMGAEhBObMmVPtPSGE8b89PDxw9erVRpkjkSPgCpZIBmfOnMHQoUMRHR2Nffv2Ye3atXjxxRcRFhZWa9y8efOQnp6OXr16YcKECWjfvj0uX76MnJwc7Ny5E5cvXwYATJgwAV9++SXGjBmD7OxsBAQEYM2aNXB3d69zbgMGDMDLL7+Mzz//HAUFBYiOjobBYMDPP/+MAQMGID4+HgDQrVs37Ny5EwsXLoRarUbr1q3Rq1evezJHIofQeBcwEzmeqtt0/vOf/4hnn31WeHp6iubNm4v4+Hhx48YNYz8AIi4uzuw+Lly4IOLi4kRQUJBwdnYW/v7+YuDAgWLZsmUm/X7//XcxdOhQ4e7uLlq0aCGmTJki0tLS6rxNRwgh/vzzT/Hxxx+L0NBQ4eLiInx9fUVMTIzIzs429jlx4oSIiIgQbm5uAoDJLTtSz5HIESmEuOOYEBE1yOzZszFnzhxcvHgRLVq0aOzpEFEj4jlYIiIiGTDBEhERyYAJloiISAY8B0tERCQDrmCJiIhkwARLREQkA5t70ITBYEBJSQk8PT3rrOxBRER0rwghcO3aNajVajRpUvf61OYSbElJCYKCghp7GkRERGadPXsWgYGBdfazuQTr6ekJAFiyZEm1aiOWeDpsrNVjpxxZaXXs49N8rI4FgN2f/mF17Met/sfq2Bm/vWp1bEM/s7VUu4dYHZsktBLOpH6U/9WlUcadU366UcZN9GjTKOMC999nvt8+L9B4nxn4vzxVF5tLsFWHhd3c3Kx6ZqmXZZ/brIY8I9VL4WH9wADc3W9YHevUzPo/xsb8zFaP24A/Y6Xwkm4i9eSqcGq0sRvD/fZ5gfvvM99vn7eKpacvZbvIafHixWjVqhVcXV3Rq1cvHDx4UK6hiIiIbI4sCXbDhg2YPn06EhMTkZOTg7CwMAwaNAhlZWVyDEdERGRzZEmwCxcuxIQJE/DKK6+gffv2WLp0Kdzd3bFixQo5hiMiIrI5kifYW7duITs7G5GRkf83SJMmiIyMxL59+6QejoiIyCZJfpHTpUuXUFlZiZYtW5psb9myJU6cOFGtv16vh16vN77W6XRST4mIiOiea/QnOSUlJUGlUhkb74ElIiJHIHmCbdGiBZycnHDhwgWT7RcuXIC/v3+1/gkJCdBqtcZ29uxZqadERER0z0meYF1cXNCtWzfs2rXLuM1gMGDXrl0IDw+v1l+pVMLLy8ukERER2TtZHjQxffp0xMbGonv37ujZsycWLVqE8vJyvPLKK3IMR0REZHNkSbDPPfccLl68iPfeew+lpaV49NFHkZaWVu3CJyIiIkcl26MS4+PjER8fL9fuiYiIbFqjX0VMRETkiGzuYf9Vng4b26CHut9r/1p6qUHxf2/zD6tjjzyQYXXsJrxhdWxDPnNDPu+7ORutjkUDC9rM3lh3iaqazIP1hRWIyP5wBUtERCQDJlgiIiIZMMESERHJQPIEu2fPHgwZMgRqtRoKhQJbtmyReggiIiKbJ3mCLS8vR1hYGBYvXiz1romIiOyG5FcRx8TEICYmRurdEhER2ZVGv02H5eqIiMgRNfpFTixXR0REjqjREyzL1RERkSNq9EPESqUSSqWysadBREQkqUZfwRIRETkiyVew169fR2FhofH1mTNnkJubC29vb2g0GqmHIyIiskmSJ9isrCwMGDDA+Hr69OkAgNjYWKxcuVLq4YiIiGyS5Am2f//+EEJIvVsiIiK7ohA2lg11Oh1UKhW0h2FVubpNDSll1ohGdh3VKONqe+62OrYh5epGFkyzOrYh5iU1Xsm4hOsFjTY2EUlHq9XCy8urzn68yImIiEgGTLBEREQyYIIlIiKSgeQJNikpCT169ICnpyf8/PwwfPhw5OfnSz0MERGRTZM8wWZmZiIuLg779+/Hjh07cPv2bURFRaG8vFzqoYiIiGyW5LfppKWlmbxeuXIl/Pz8kJ2djYiICKmHIyIiskmyP4tYq9UCALy9vc2+z3J1RETkiGS9yMlgMGDq1Kno06cPOnbsaLYPy9UREZEjkjXBxsXFIS8vD99++22NfViujoiIHJFsh4jj4+Oxbds27NmzB4GBgTX2Y7k6IiJyRJInWCEEJk2ahJSUFGRkZKB169ZSD0FERGTzJE+wcXFxWLduHbZu3QpPT0+UlpYCAFQqFdzc3KQejoiIyCZJfg52yZIl0Gq16N+/PwICAoxtw4YNUg9FRERks2Q5RExERHS/k/0+WGulHFkJd/d7W1rs723+YXXsu6ffaNDYjVVm7+//et/q2CMPZFg/cMGDVofOHnXO+nEbpyrgXx5SNOLgRHSv8WH/REREMmCCJSIikgETLBERkQxkuYq4c+fO8PLygpeXF8LDw/HTTz9JPQwREZFNkzzBBgYGYt68ecjOzkZWVhYef/xxDBs2DL/++qvUQxEREdksya8iHjJkiMnrDz74AEuWLMH+/fvRoUMHqYcjIiKySbLeplNZWYlNmzahvLwc4eHhZvuwXB0RETkiWS5yOnbsGJo1awalUomJEyciJSUF7du3N9uX5eqIiMgRyZJgQ0JCkJubiwMHDuD1119HbGws/vOf/5jty3J1RETkiGQ5ROzi4oJ27doBALp164ZDhw7hs88+w1dffVWtL8vVERGRI7on98EaDAaT86xERESOTvIVbEJCAmJiYqDRaHDt2jWsW7cOGRkZ2L59u9RDERER2SzJE2xZWRnGjBmD8+fPQ6VSoXPnzti+fTueeOIJqYciIiKyWZIn2OXLl0u9SyIiIrvDZxETERHJwGbrwVqrsWq6Rk1sYXUsAPxr6SWrYxvrM2snvmd1bEOkDBpgdeyR7QUNGrtBtWiJ6L7CFSwREZEMmGCJiIhkIHuCnTdvHhQKBaZOnSr3UERERDZD1gR76NAhfPXVV+jcubOcwxAREdkc2RLs9evXMXr0aHz99ddo3ry5XMMQERHZJNkSbFxcHAYPHozIyMha++n1euh0OpNGRERk72S5Tefbb79FTk4ODh06VGffpKQkzJkzR45pEBERNRrJV7Bnz57FlClT8M0338DV1bXO/ixXR0REjkjyFWx2djbKysrQtWtX47bKykrs2bMHX375JfR6PZycnIzvsVwdERE5IskT7MCBA3Hs2DGTba+88gpCQ0Px1ltvmSRXIiIiRyV5gvX09ETHjh1Ntnl4eMDHx6fadiIiIkfFJzkRERHJ4J487D8jI+NeDENERGQzuIIlIiKSgUIIIRp7EnfS6XRQqVTokNEXTs3qv8A+8kCG1WNvytlodWxDNaTknD1+5sb6vNjwoPWxDaR4p7jRxiYi6Wi1Wnh5edXZjytYIiIiGTDBEhERyUDyBDt79mwoFAqTFhoaKvUwRERENk2Wq4g7dOiAnTt3/t8gTe/JxcpEREQ2Q5bM17RpU/j7+8uxayIiIrsgyznYgoICqNVqtGnTBqNHj0ZRUZEcwxAREdksyVewvXr1wsqVKxESEoLz589jzpw5+K//+i/k5eXB09OzWn+9Xg+9Xm98zXqwRETkCCRPsDExMcb/7ty5M3r16oXg4GBs3LgR48ePr9af9WCJiMgRyX6bzgMPPICHH34YhYWFZt9nPVgiInJEsifY69ev49SpUwgICDD7vlKphJeXl0kjIiKyd5In2P/+7/9GZmYmfvvtN/zyyy94+umn4eTkhBdeeEHqoYiIiGyW5Odgz507hxdeeAF//PEHfH190bdvX+zfvx++vr5SD0VERGSzJE+w3377rdS7JCIisjt8FjEREZEMbPYZhr+o9sKr+m2zsoqa2MLq2H8tvdSgsRtUgq0BGuszH9leYHUsYH3JuXlJ7g0YF7h5+KT1we8oGjQ2EdkXrmCJiIhkwARLREQkA1kSbHFxMV566SX4+PjAzc0NnTp1QlZWlhxDERER2STJz8FeuXIFffr0wYABA/DTTz/B19cXBQUFaN68udRDERER2SzJE+z8+fMRFBSE5ORk47bWrVtLPQwREZFNk/wQcWpqKrp3746RI0fCz88PXbp0wddffy31MERERDZN8gR7+vRpLFmyBA899BC2b9+O119/HZMnT8aqVavM9tfr9dDpdCaNiIjI3kl+iNhgMKB79+748MMPAQBdunRBXl4eli5ditjY2Gr9Wa6OiIgckeQr2ICAALRv395k2yOPPIKioiKz/VmujoiIHJHkK9g+ffogPz/fZNvJkycRHBxstr9SqYRSqZR6GkRERI1K8hXstGnTsH//fnz44YcoLCzEunXrsGzZMsTFxUk9FBERkc2SPMH26NEDKSkpWL9+PTp27Ii5c+di0aJFGD16tNRDERER2SxZHvb/1FNP4amnnpJj10RERHaBzyImIiKSgc2Wq0s5shLu7g0rLVZff//X+1bHNrTc3KacjQ2Kt9bIsJnWx3Y9aP3ABdaXnJs96pz1sQi0OvaveCIiy3AFS0REJAMmWCIiIhlInmBbtWoFhUJRrfE2HSIiup9Ifg720KFDqKysNL7Oy8vDE088gZEjR0o9FBERkc2SPMH6+vqavJ43bx7atm2Lfv36ST0UERGRzZL1HOytW7ewdu1ajBs3DgqFQs6hiIiIbIqst+ls2bIFV69exdixY2vso9frodfrja9Zro6IiByBrCvY5cuXIyYmBmq1usY+SUlJUKlUxhYUFCTnlIiIiO4J2RLs77//jp07d+LVV1+ttR/L1RERkSOS7RBxcnIy/Pz8MHjw4Fr7sVwdERE5IllWsAaDAcnJyYiNjUXTpjb7NEYiIiLZyJJgd+7ciaKiIowbN06O3RMREdk8WZaXUVFREELIsWsiIiK7wGcRExERyUAhbGypqdPpoFKpUNT8e3gpPOodH9GQknPbC6yObSjtgjVWx9rjZ25IybkOhzdZHXtq3DtWxzZUwvXG+34RkXS0Wi28vLzq7McVLBERkQyYYImIiGTABEtERCQDyRNsZWUlZs2ahdatW8PNzQ1t27bF3LlzeVUxERHdVyS/TWf+/PlYsmQJVq1ahQ4dOiArKwuvvPIKVCoVJk+eLPVwRERENknyBPvLL79g2LBhxkcktmrVCuvXr8fBgwelHoqIiMhmSX6IuHfv3ti1axdOnjwJADhy5Aj27t2LmJgYs/31ej10Op1JIyIisneSr2BnzpwJnU6H0NBQODk5obKyEh988AFGjx5ttn9SUhLmzJkj9TSIiIgaleQr2I0bN+Kbb77BunXrkJOTg1WrVuGTTz7BqlWrzPZnuToiInJEkq9gZ8yYgZkzZ+L5558HAHTq1Am///47kpKSEBsbW60/y9UREZEjknwFW1FRgSZNTHfr5OQEg8Eg9VBEREQ2S/IV7JAhQ/DBBx9Ao9GgQ4cOOHz4MBYuXMjSdUREdF+RPMF+8cUXmDVrFt544w2UlZVBrVbjb3/7G9577z2phyIiIrJZkidYT09PLFq0CIsWLZJ610RERHZDloLrUlB1nA2vpk71jjvyQEMeaPFgA2IbRhU20+pYe/zMDSk5FzWxhdWxS6yO/MvNwyetD35I0cDRicie8GH/REREMmCCJSIikgETLBERkQxkSbDXrl3D1KlTERwcDDc3N/Tu3RuHDh2SYygiIiKbJEuCffXVV7Fjxw6sWbMGx44dQ1RUFCIjI1FcXCzHcERERDZH8gR748YNfPfdd/joo48QERGBdu3aYfbs2WjXrh2WLGnoNZxERET2QfLbdP78809UVlbC1dXVZLubmxv27t1brb9er4derze+Zrk6IiJyBJKvYD09PREeHo65c+eipKQElZWVWLt2Lfbt24fz589X65+UlASVSmVsQUFBUk+JiIjonpPlHOyaNWsghMCDDz4IpVKJzz//HC+88EK1IgAAy9UREZFjkuVJTm3btkVmZibKy8uh0+kQEBCA5557Dm3atKnWl+XqiIjIEcl6H6yHhwcCAgJw5coVbN++HcOGDZNzOCIiIpshywp2+/btEEIgJCQEhYWFmDFjBkJDQ/HKK6/IMRwREZHNkWUFq9VqERcXh9DQUIwZMwZ9+/bF9u3b4ezsLMdwRERENkeWFeyoUaMwatQoOXZNRERkF2y2XB36lwCu9V9ga3vutnrIJbf+ZnVsg8qYAZiNQKtj7fUzW+vXA9bHznmooEFjJ3V5uEHxRHT/4MP+iYiIZMAES0REJAMmWCIiIhnUO8Hu2bMHQ4YMgVqthkKhwJYtW0zeF0LgvffeQ0BAANzc3BAZGYmCgoad9yIiIrI39U6w5eXlCAsLw+LFi82+/9FHH+Hzzz/H0qVLceDAAXh4eGDQoEG4efNmgydLRERkL+p9FXFMTAxiYmLMvieEwKJFi/Duu+8an9q0evVqtGzZElu2bMHzzz/fsNkSERHZCUnPwZ45cwalpaWIjIw0blOpVOjVqxf27dtnNkav10On05k0IiIieydpgi0tLQUAtGzZ0mR7y5Ytje/djeXqiIjIETX6VcQsV0dERI5I0gTr7+8PALhw4YLJ9gsXLhjfu5tSqYSXl5dJIyIisneSJtjWrVvD398fu3btMm7T6XQ4cOAAwsPDpRyKiIjIptX7KuLr16+jsLDQ+PrMmTPIzc2Ft7c3NBoNpk6dir///e946KGH0Lp1a8yaNQtqtRrDhw+Xct5EREQ2rd4JNisrCwMGDDC+nj59OgAgNjYWK1euxJtvvony8nK89tpruHr1Kvr27Yu0tDS4urpKN2siIiIbV+8E279/fwghanxfoVDg/fffx/vvv9+giREREdmzRr+KmIiIyBHZbj1YK316YEDdnWowe2OF9bFWRzbc/faZXRtQkzWp2UMSzoSIqGZcwRIREcmACZaIiEgGkper27x5M6KiouDj4wOFQoHc3FyJpkpERGQ/JC9XV15ejr59+2L+/PkNnhwREZG9krRcHQC8/PLLAIDffvvN6kkRERHZu0a/iliv10Ov1xtfs1wdERE5gka/yInl6oiIyBE1eoJluToiInJEjX6IWKlUQqlUNvY0iIiIJNXoK1giIiJHJHm5usuXL6OoqAglJSUAgPz8fAB/FWOvqeg6ERGRo6n3CjYrKwtdunRBly5dAPxVrq5Lly547733AACpqano0qULBg8eDAB4/vnn0aVLFyxdulTCaRMREdk2ycvVjR07FmPHjm3InIiIiOwez8ESERHJQCFqW442Ap1OB5VKhUSPNnBVON3TsROuF9zT8e7UkDJqjTlva91vn5eIHIdWq4WXl1ed/biCJSIikgETLBERkQwkLVd3+/ZtvPXWW+jUqRM8PDygVqsxZswY4y07RERE9wtJy9VVVFQgJycHs2bNQk5ODjZv3oz8/HwMHTpUkskSERHZC0nL1alUKuzYscNk25dffomePXuiqKgIGo3GulkSERHZGdnPwWq1WigUCjzwwANyD0VERGQzZH3Y/82bN/HWW2/hhRdeqPGSZtaDJSIiRyTbCvb27dsYNWoUhBBYsmRJjf1YD5aIiByRLAm2Krn+/vvv2LFjR6035LIeLBEROSLJDxFXJdeCggKkp6fDx8en1v6sB0tERI5I0nJ1AQEBePbZZ5GTk4Nt27ahsrISpaWlAABvb2+4uLhIN3MiIiIbVu8Em5WVhQEDBhhfT58+HQAQGxuL2bNnIzU1FQDw6KOPmsSlp6ejf//+1s+UiIjIjkhers7GagcQERE1Cj6LmIiISAay3gdLlrvfSrDdb5+XiO4/XMESERHJgAmWiIhIBpKWqwOA2bNnIzQ0FB4eHmjevDkiIyNx4MABqeZLRERkFyQtVwcADz/8ML788kscO3YMe/fuRatWrRAVFYWLFy82eLJERET2QiEacF+NQqFASkoKhg8fXmMfnU4HlUqFnTt3YuDAgXXus6p/okcbuCqcrJ2aVXjhDRER1UWr1db6COAqsp6DvXXrFpYtWwaVSoWwsDA5hyIiIrIpstyms23bNjz//POoqKhAQEAAduzYgRYtWpjty3J1RETkiGRZwQ4YMAC5ubn45ZdfEB0djVGjRqGsrMxsX5arIyIiRyRLgvXw8EC7du3w2GOPYfny5WjatCmWL19uti/L1RERkSO6J09yMhgMJoeB78RydURE5IgkLVfn4+ODDz74AEOHDkVAQAAuXbqExYsXo7i4GCNHjpR04kRERLZM0nJ1S5cuxYkTJ7Bq1SpcunQJPj4+6NGjB37++Wd06NBBulkTERHZOMnL1W3evLlBEyIiInIEfBYxERGRDGy2XN2c8tONPQUiIiKrcQVLREQkAyZYIiIiGUheru5OEydOhEKhwKJFixowRSIiIvsjebm6KikpKdi/fz/UarXVkyMiIrJX9b7IKSYmBjExMbX2KS4uxqRJk7B9+3YMHjzY6skRERHZK8nPwRoMBrz88suYMWMGHy5BRET3Lclv05k/fz6aNm2KyZMnW9Sf5eqIiMgRSbqCzc7OxmeffYaVK1dCoVBYFMNydURE5IgkTbA///wzysrKoNFo0LRpUzRt2hS///47/t//+39o1aqV2RiWqyMiIkck6SHil19+GZGRkSbbBg0ahJdffhmvvPKK2RiWqyMiIkckabk6jUYDHx8fk/7Ozs7w9/dHSEhIw2dLRERkJyQtV7dy5UrJJkZERGTPFKK22nONQKfTQaVSNfY0iIiIzNJqtfDy8qqzH59FTEREJAMmWCIiIhkwwRIREcmACZaIiEgGTLBEREQykLwe7NixY6FQKExadHS0VPMlIiKyC7LUg42Ojsb58+eNbf369Q2aJBERkb2RpR6sUqmEv7+/1ZMiIiKyd7Kcg83IyICfnx9CQkLw+uuv448//qixr16vh06nM2lERET2TvIEGx0djdWrV2PXrl2YP38+MjMzERMTg8rKSrP9Wa6OiIgcUYMelahQKJCSkoLhw4fX2Of06dNo27Ytdu7ciYEDB1Z731zBdSZZIiKyVTbzqMQ2bdqgRYsWJhV47qRUKuHl5WXSiIiI7J3sCfbcuXP4448/EBAQIPdQRERENkPSerDe3t6YM2cORowYAX9/f5w6dQpvvvkm2rVrh0GDBkk6cSIiIpsm6ik9PV0AqNZiY2NFRUWFiIqKEr6+vsLZ2VkEBweLCRMmiNLSUov3r9Vqze6fjY2NjY3NFppWq7Uon7EeLBERUT1YepFTvQ8R3yuJHm3gqnC6p2MmXC+4p+MREZHj4sP+iYiIZMAES0REJAMmWCIiIhlIXq4OAI4fP46hQ4dCpVLBw8MDPXr0QFFRkRTzJSIisguSl6s7deoU+vbti9DQUGRkZODo0aOYNWsWXF1dGzxZIiIieyF5ubp33nkHTz75JD766CPjtrZt21o3OyIiIjsl6TlYg8GAH374AQ8//DAGDRoEPz8/9OrVy+xh5CosV0dERI5I0gRbVlaG69evY968eYiOjsa//vUvPP3003jmmWeQmZlpNobl6oiIyBFJvoIFgGHDhmHatGl49NFHMXPmTDz11FNYunSp2ZiEhARotVpjO3v2rJRTIiIiahSSPsmpRYsWaNq0Kdq3b2+y/ZFHHsHevXvNxiiVSiiVSimnQURE1OgkXcG6uLigR48eyM/PN9l+8uRJBAcHSzkUERGRTZO0XJ1Go8GMGTPw3HPPISIiAgMGDEBaWhq+//57ZGRkSDlvIiIim1bvajoZGRkYMGBAte2xsbFYuXIlAGDFihVISkrCuXPnEBISgjlz5mDYsGEW7b+qmg4f9k9ERLbI0mo6NluujgmWiIhskaUJls8iJiIikgETLBERkQyYYImIiGTABEtERCQDycvVKRQKs+3jjz+Was5EREQ2T/JydefPnzdpK1asgEKhwIgRIxo8WSIiInshebk6f39/k9dbt27FgAED0KZNm/rPjoiIyE5J+iziu124cAE//PADVq1aVWMfvV4PvV5vfM1ydURE5Ahkvchp1apV8PT0xDPPPFNjH5arIyIiRyRrgl2xYgVGjx4NV1fXGvuwXB0RETki2Q4R//zzz8jPz8eGDRtq7cdydURE5IhkW8EuX74c3bp1Q1hYmFxDEBER2SzJy9UBf12otGnTJixYsEC6mRIREdmReifYrKwsk3J106dPB2Baru7bb7+FEAIvvPCCNLMkIiKyMyxXdweWqyMiorqwXB0REVEjkvVBEw0xp/x0Y0+BiIjIalzBEhERyYAJloiISAaSl6u7fv064uPjERgYCDc3N7Rv3x5Lly6Var5ERER2QfJyddOnT0daWhrWrl2L48ePY+rUqYiPj0dqamqDJ0tERGQ3RAMAECkpKSbbOnToIN5//32TbV27dhXvvPOORfvUarUCABsbGxsbm002rVZrUT6T/Bxs7969kZqaiuLiYgghkJ6ejpMnTyIqKspsf71eD51OZ9KIiIjsnkVpuAZA9RXszZs3xZgxYwQA0bRpU+Hi4iJWrVpV4z4SExMb/V8jbGxsbGxslrZGW8F+8cUX2L9/P1JTU5GdnY0FCxYgLi4OO3fuNNuf5eqIiMghSbmCraioEM7OzmLbtm0m/caPHy8GDRpk0T55DpaNjY2NzZZbo6xgb9++jdu3b6NJE9PdOjk5wWAwSDkUERGRTZO8XF2/fv0wY8YMuLm5ITg4GJmZmVi9ejUWLlwo6cSJiIhsmsXHg/9Xenq62SVzbGysEEKI8+fPi7Fjxwq1Wi1cXV1FSEiIWLBggTAYDDxEzMbGxsZm983SQ8Q2W66OiIjIFrFcHRERUSNigiUiIpIBEywREZEMmGCJiIhkIHm5ugsXLmDs2LFQq9Vwd3dHdHQ0CgoKpJovERGRXZC0XJ0QAsOHD8fp06exdetWHD58GMHBwYiMjER5ebkkEyYiIrIL9b0P9k6A6aMS8/PzBQCRl5dn3FZZWSl8fX3F119/bdE+eR8sGxsbG5stt0Z5VKJerwcAuLq6Grc1adIESqUSe/fulXIoIiIimyZpgg0NDYVGo0FCQgKuXLmCW7duYf78+Th37hzOnz9vNob1YImIyBFJmmCdnZ2xefNmnDx5Et7e3nB3d0d6ejpiYmKqFQCokpSUBJVKZWxBQUFSTomIiKhRSH6bTrdu3ZCbm4urV6/i/PnzSEtLwx9//IE2bdqY7c96sERE5IjqXU3HUlXPEy4oKEBWVhbmzp1rtp9SqYRSqZRrGkRERI1C8nJ1mzZtgq+vLzQaDY4dO4YpU6Zg+PDhiIqKknTiRERENq1e9+WIusvVffbZZyIwMFA4OzsLjUYj3n33XaHX6y3eP2/TYWNjY2Oz5cZydURERDJguToiIqJGJNtFTg2V6NEGrgqnezpmwnU+M5mIiKTBFSwREZEMmGCJiIhkUK8Em5SUhB49esDT0xN+fn4YPnw48vPzTfrcvHkTcXFx8PHxQbNmzTBixAhcuHBB0kkTERHZunol2MzMTMTFxWH//v3YsWMHbt++jaioKJNSdNOmTcP333+PTZs2ITMzEyUlJXjmmWcknzgREZEta9BtOhcvXoSfnx8yMzMREREBrVYLX19frFu3Ds8++ywA4MSJE3jkkUewb98+PPbYY3Xus+o2HV7kREREtuie3Kaj1WoBAN7e3gCA7Oxs3L59G5GRkcY+VRV29u3b15ChiIiI7IrVt+kYDAZMnToVffr0QceOHQEApaWlcHFxwQMPPGDSt2XLligtLTW7H71eb6wjC4Dl6oiIyCFYvYKNi4tDXl4evv322wZNgOXqiIjIEVmVYOPj47Ft2zakp6cjMDDQuN3f3x+3bt3C1atXTfpfuHAB/v7+ZvfFcnVEROSI6pVghRCIj49HSkoKdu/ejdatW5u8361bNzg7O2PXrl3Gbfn5+SgqKkJ4eLjZfSqVSnh5eZk0IiIie1evc7BxcXFYt24dtm7dCk9PT+N5VZVKBTc3N6hUKowfPx7Tp0+Ht7c3vLy8MGnSJISHh1t0BTEREZGjqFeCXbJkCQCgf//+JtuTk5MxduxYAMCnn36KJk2aYMSIEdDr9Rg0aBD+8Y9/SDJZIiIie2Gz5ep4HywREdkilqsjIiJqREywREREMmCCJSIikgETLBERkQwkL1e3bNky9O/fH15eXlAoFNUeOkFERHQ/kLxcXUVFBaKjo/H2229LPlkiIiJ7Ua/7YNPS0kxer1y5En5+fsjOzkZERAQAYOrUqQCAjIwMSSZIRERkjyQtV0dERER/kbRcnTVYro6IiBwRy9URERHJQNJyddZguToiInJE9TpELITApEmTkJKSgoyMjGrl6qyhVCqhVCobvB8iIiJbImm5OgAoLS1FaWkpCgsLAQDHjh2Dp6cnNBoNL4YiIqL7Rr0OES9ZsgRarRb9+/dHQECAsW3YsMHYZ+nSpejSpQsmTJgAAIiIiECXLl2Qmpoq7cyJiIhsGMvV3YHl6oiIqC4sV0dERNSIrL4PVm5zyk839hSIiIisxhUsERGRDJhgiYiIZMAES0REJANJ68FevnwZkyZNQkhICNzc3KDRaDB58mRjUQAiIqL7haT1YEtKSlBSUoJPPvkEeXl5WLlyJdLS0jB+/HhZJk9ERGSzRAOUlZUJACIzM7PGPhs3bhQuLi7i9u3bFu1Tq9UKAGxsbGxsbDbZtFqtRfmsQbfpWFIPtuqG3KZNzQ/FcnVEROSQLErDZlRWVorBgweLPn361Njn4sWLQqPRiLfffrvGPomJiY3+rxE2NjY2NjZLm6UrWKsflfj666/jp59+wt69e82WrNPpdHjiiSfg7e2N1NRUODs7m92PuRUsa8ISEZGtsvRRiVYdIq6qB7tnzx6zyfXatWuIjo6Gp6cnUlJSakyuAMvVERGRY6rXVcRCCMTHxyMlJQW7d+82Ww9Wp9MhKioKLi4uSE1Nhaurq2STJSIisheS1oOtSq4VFRVYu3YtdDqd8aIlX19fODnd2+o4REREjaY+FzahhhO+ycnJQggh0tPTa+xz5swZi8bgbTpsbGxsbLbcZL/ISS5V9WCJiIhsEevBEhERNSImWCIiIhkwwRIREcmACZaIiEgGkparA4C//e1vaNu2Ldzc3ODr64thw4bhxIkTkk6aiIjI1klarg4AunXrhuTkZBw/fhzbt2+HEAJRUVGorKyUfPJERES2qkG36Vy8eBF+fn7IzMxERESE2T5Hjx5FWFgYCgsL0bZt2zr3ydt0iIjIlsn6LOI7BwFqLldXXl6O5ORktG7dusYH+LNcHREROaT6PMnpTrWVq1u8eLHw8PAQAERISIgoLCyscT8sV8fGxsbGZk+tUcvVabValJWV4fz58/jkk09QXFyMf//732Yf/M9ydUREZE8sPURs1Qo2Li5OBAYGitOnT9fZV6/XC3d3d7Fu3TqL9s1nEbOxsbGx2XKzdAVbr3OwQghMmjQJKSkpyMjIMFuuzlyMEMJklUpEROToJC1Xd/r0aWzYsAFRUVHw9fXFuXPnMG/ePLi5ueHJJ5+U5QMQERHZJIvWuf8LNSyXq8rVFRcXi5iYGOHn5yecnZ1FYGCgePHFF8WJEycsHoOHiNnY2NjYbLmxXB0REZEM7sl9sHJK9GgDV4XTPR0z4XrBPR2PiIgcFx/2T0REJAMmWCIiIhkwwRIREclA8nJ1VYQQiImJgUKhwJYtW6SYKxERkd2QvFxdlUWLFkGhUEg2USIiIntSr6uI09LSTF6vXLkSfn5+yM7ONilXl5ubiwULFiArKwsBAQHSzJSIiMiOSF6urqKiAi+++CIWL14Mf3//OvfBcnVEROSIrL7IyWAwYOrUqejTpw86duxo3D5t2jT07t0bw4YNs2g/SUlJUKlUxsZKOkRE5AisXsHGxcUhLy8Pe/fuNW5LTU3F7t27cfjwYYv3k5CQgOnTpxtfs1wdERE5AqtWsPHx8di2bRvS09NNasHu3r0bp06dwgMPPICmTZuiadO/8veIESPQv39/s/tSKpXw8vIyaURERPZO0nJ1M2fOxKuvvmqyrVOnTvj0008xZMiQhs+WiIjITkhars7f39/shU0ajcai2rFERESOol6HiJcsWQKtVov+/fsjICDA2DZs2CDX/IiIiOxSvQ8R15eNVcMjIiK6J/gsYiIiIhnYbD3YOeWnrYpLavaQxDMhIiKqP65giYiIZMAES0REJAPJy9X1798fCoXCpE2cOFHSSRMREdk6WcrVTZgwAefPnze2jz76SNJJExER2TpZytW5u7tbVEmHiIjIUTXoHKy5cnUA8M0336BFixbo2LEjEhISUFFRUeM+9Ho9dDqdSSMiIrJ3Vt+mU1O5uhdffBHBwcFQq9U4evQo3nrrLeTn52Pz5s1m95OUlIQ5c+ZYOw0iIiKbpBBWPmrp9ddfx08//YS9e/eaVNS52+7duzFw4EAUFhaibdu21d43V3C9IeXqGnIfbML1AqtjiYjo/qDVai2q/GbVCraqXN2ePXtqTa4A0KtXLwCoMcEqlUoolUprpkFERGSzJC1XZ05ubi4AICAgwKoJEhER2SNJy9WdOnUK69atw5NPPgkfHx8cPXoU06ZNQ0REBDp37izLByAiIrJF9ToHq1AozG5PTk7G2LFjcfbsWbz00kvIy8tDeXk5goKC8PTTT+Pdd9+16Hg18Nc5WJVKZemUquE5WCIikpMs52DrysVBQUHIzMyszy6JiIgcEp9FTEREJAObLVdnLR7mJSIiW8AVLBERkQyYYImIiGQgebk6ANi3bx8ef/xxeHh4wMvLCxEREbhx44ZkkyYiIrJ1kper27dvH6KjoxEVFYWDBw/i0KFDiI+PR5MmXCwTEdH9w+pnEQPAxYsX4efnh8zMTGO5usceewxPPPEE5s6da9U+G3ofLBERkZwsvQ9W0nJ1ZWVlOHDgAPz8/NC7d2+0bNkS/fr1w969exsyDBERkd2xOsGaK1d3+vRpAMDs2bMxYcIEpKWloWvXrhg4cCAKCszfPsN6sERE5JCElSZOnCiCg4PF2bNnjdv+/e9/CwAiISHBpG+nTp3EzJkzze4nMTFRAGBjY2NjY7OLptVqLcqTVq1gq8rVpaenm5Srq6qY0759e5P+jzzyCIqKiszuKyEhAVqt1tjOnj1rzZSIiIhsiqTl6lq1agW1Wl3t1p2TJ08iJibG7D5ZD5aIiByRpOXqFAoFZsyYgcTERISFheHRRx/FqlWrcOLECfzzn/+U5QMQERHZpPqcd0UNx6OTk5NN+iUlJYnAwEDh7u4uwsPDxc8//2zxGFqtttGPr7OxsbGxsdXULD0H26D7YOXA+2CJiMiW3ZP7YImIiMg8JlgiIiIZMMESERHJgAmWiIhIBpKWq/vtt9+gUCjMtk2bNkk+eSIiIlslabm6oKAgnD9/3qTNmTMHzZo1q/FBE0RERI5I8nJ1d+vSpQu6du2K5cuXW7RP3qZDRES2rFHK1d0tOzsbubm5GD9+fEOGISIisjv1elTincyVq7vb8uXL8cgjj6B379417kev10Ov1xtfs1wdERE5AqtXsHFxccjLy8O3335r9v0bN25g3bp1da5ek5KSoFKpjC0oKMjaKREREdkOix8SfIe4uDgRGBgoTp8+XWOf1atXC2dnZ1FWVlbrvm7evCm0Wq2xnT17ttGfM8nGxsbGxlZTs/RZxJKWq7vT8uXLMXToUPj6+ta6T5arIyIiRyRpuboqhYWF2LNnD3788UdpZ0tERGQv6nNoGDUsl+8uV5eQkCCCgoJEZWVlfXYvhGC5OjY2NjY2224sV0dERCQDuy1XZ2P5noiIyISlecrmEuy1a9caewpEREQ1sjRP2dwhYoPBgJKSEnh6ekKhUFR7X6fTISgoCGfPnrVoiW7vsY05NmPrxx7nfb/FNubYjK0fW5y3EALXrl2DWq1GkyZ1r0+tfpKTXJo0aYLAwMA6+3l5eVn1h2avsY05NmPtY2zG2sfYjLWPsWuKrc81QjZ3iJiIiMgRMMESERHJwO4SrFKpRGJiolVPf7LH2MYcm7H2MTZj7WNsxtrH2A2d951s7iInIiIiR2B3K1giIiJ7wARLREQkAyZYIiIiGTDBEhERycDuEuzixYvRqlUruLq6olevXjh48GCdMXv27MGQIUOgVquhUCiwZcsWi8dLSkpCjx494OnpCT8/PwwfPhz5+fkWxS5ZsgSdO3c23rAcHh6On376yeKx7zRv3jwoFApMnTq1zr6zZ8+GQqEwaaGhoRaPVVxcjJdeegk+Pj5wc3NDp06dkJWVZVFsq1atqo2tUCgQFxdXZ2xlZSVmzZqF1q1bw83NDW3btsXcuXMtfu7ntWvXMHXqVAQHB8PNzQ29e/fGoUOHqvWr6/sghMB7772HgIAAuLm5ITIyEgUFBRbFbt68GVFRUfDx8YFCoUBubq5F496+fRtvvfUWOnXqBA8PD6jVaowZMwYlJSUWz3v27NkIDQ2Fh4cHmjdvjsjISBw4cMCi2DtNnDgRCoUCixYtsih27Nix1f68o6OjLR73+PHjGDp0KFQqFTw8PNCjRw8UFRXVGWvue6ZQKPDxxx/XGXv9+nXEx8cjMDAQbm5uaN++PZYuXWrRnC9cuICxY8dCrVbD3d0d0dHRxu+HJb8XN2/eRFxcHHx8fNCsWTOMGDECFy5csCh22bJl6N+/P7y8vKBQKHD16lWLxr18+TImTZqEkJAQuLm5QaPRYPLkydBqtRbP+29/+xvatm0LNzc3+Pr6YtiwYThx4kS9fiOFEIiJiTH+f7Uktn///tX+jCdOnGjxuPv27cPjjz8ODw8PeHl5ISIiAu+//36tsb/99luN369NmzaZ/Wzm2FWC3bBhA6ZPn47ExETk5OQgLCwMgwYNQllZWa1x5eXlCAsLw+LFi+s9ZmZmJuLi4rB//37s2LEDt2/fRlRUFMrLy+uMDQwMxLx585CdnY2srCw8/vjjGDZsGH799dd6zeHQoUP46quv0LlzZ4tjOnTogPPnzxvb3r17LYq7cuUK+vTpA2dnZ/z000/4z3/+gwULFqB58+YWz/XOcXfs2AEAGDlyZJ2x8+fPx5IlS/Dll1/i+PHjmD9/Pj766CN88cUXFo396quvYseOHVizZg2OHTuGqKgoREZGori42KRfXd+Hjz76CJ9//jmWLl2KAwcOwMPDA4MGDcLNmzfrjC0vL0ffvn0xf/58s+/VFFtRUYGcnBzMmjULOTk52Lx5M/Lz8zF06FCL5/3www/jyy+/xLFjx7B37160atUKUVFRuHjxosV/B1JSUrB//36o1WqLxwWA6Ohokz/39evXWxR76tQp9O3bF6GhocjIyMDRo0cxa9YsuLq61hl753jnz5/HihUroFAoMGLEiDpjp0+fjrS0NKxduxbHjx/H1KlTER8fj9TU1FpjhRAYPnw4Tp8+ja1bt+Lw4cMIDg5GZGQkysvLLfq9mDZtGr7//nts2rQJmZmZKCkpwTPPPGNRbEVFBaKjo/H222+bzKuu2JKSEpSUlOCTTz5BXl4eVq5cibS0NIwfP96ieADo1q0bkpOTcfz4cWzfvh1CCERFRSEjI8Pi38hFixaZPALX0t/XCRMmmPxZf/TRRxbF7tu3D9HR0YiKisLBgwdx6NAhxMfHY+/evbXGBgUFVft+zZkzB82aNUNMTIzZ75RZ9S7Y2oh69uwp4uLijK8rKyuFWq0WSUlJFu8DgEhJSbF6DmVlZQKAyMzMtCq+efPm4n/+538s7n/t2jXx0EMPiR07doh+/fqJKVOm1BmTmJgowsLCrJrfW2+9Jfr27WtVrDlTpkwRbdu2FQaDoc6+gwcPFuPGjTPZ9swzz4jRo0fXGVtRUSGcnJzEtm3bTLZ37dpVvPPOOzXG3f19MBgMwt/fX3z88cfGbVevXhVKpVKsX7++1tg7nTlzRgAQhw8ftmhccw4ePCgAiN9//92q+Krayjt37rQo9ty5c+LBBx8UeXl5Ijg4WHz66acWjRsbGyuGDRtW61xqin3uuefESy+9ZFXs3YYNGyYef/xxi2I7dOgg3n//fZNt5r4rd8fm5+cLACIvL8+4rbKyUvj6+oqvv/662th3/15cvXpVODs7i02bNhn7HD9+XAAQ+/btqzX2Tunp6QKAuHLlSrX36oqtsnHjRuHi4iJu375tVfyRI0cEAFFYWGhR7OHDh8WDDz4ozp8/X+Ofp7lYS3/3zMX26tVLvPvuu1bF3u3RRx+t9vtUF7tZwd66dQvZ2dmIjIw0bmvSpAkiIyOxb9++ezaPqkMq3t7e9YqrrKzEt99+i/LycoSHh1scFxcXh8GDB5t8bksUFBRArVajTZs2GD16NIqKiiyKS01NRffu3TFy5Ej4+fmhS5cu+Prrr+s1dpVbt25h7dq1GDdunNnCDXfr3bs3du3ahZMnTwIAjhw5gr1791r0L8Y///wTlZWVcHV1Ndnu5uZm8eodAM6cOYPS0lKT/98qlQq9evW6p98z4K/vmkKhwAMPPFDv2Fu3bmHZsmVQqVQICwurs7/BYMDLL7+MGTNmoEOHDvUeLyMjA35+fggJCcHrr7+OP/74w6Ixf/jhBzz88MMYNGgQ/Pz80KtXr3qdwqly4cIF/PDDD8YVWV169+6N1NRUFBcXQwiB9PR0nDx5ElFRUbXG6fV6ADD5njVp0gRKpdLs9+zu34vs7Gzcvn3b5PsVGhoKjUZT7ftl7W+NpbFVNU2bNq3+SPq64svLy5GcnIzWrVsjKCioztiKigq8+OKLWLx4Mfz9/es972+++QYtWrRAx44dkZCQgIqKijpjy8rKcODAAfj5+aF3795o2bIl+vXrZ9Gf092ys7ORm5tr8ffLqF7puBEVFxcLAOKXX34x2T5jxgzRs2dPi/eDBqxgKysrxeDBg0WfPn0sjjl69Kjw8PAQTk5OQqVSiR9++MHi2PXr14uOHTuKGzduCCEs/5fcjz/+KDZu3CiOHDki0tLSRHh4uNBoNEKn09UZq1QqhVKpFAkJCSInJ0d89dVXwtXVVaxcudLieVfZsGGDcHJyEsXFxRb1r6ysFG+99ZZQKBSiadOmQqFQiA8//NDi8cLDw0W/fv1EcXGx+PPPP8WaNWtEkyZNxMMPP1xjzN3fh3//+98CgCgpKTHpN3LkSDFq1KhaY+/U0BXsjRs3RNeuXcWLL75Yr/jvv/9eeHh4CIVCIdRqtTh48KBFsR9++KF44oknjEca6rOCXb9+vdi6das4evSoSElJEY888ojo0aOH+PPPP2uNrVrJuLu7i4ULF4rDhw+LpKQkoVAoREZGhkWft8r8+fNF8+bNjX9X6oq9efOmGDNmjAAgmjZtKlxcXMSqVavqjL1165bQaDRi5MiR4vLly0Kv14t58+YJACIqKsok1tzvxTfffCNcXFyqjdOjRw/x5ptv1hp7p9pWsJb8Tl28eFFoNBrx9ttv1yt+8eLFwsPDQwAQISEh1VavNcW+9tprYvz48cbX5v5Maor96quvRFpamjh69KhYu3atePDBB8XTTz9dZ+y+ffsEAOHt7S1WrFghcnJyxNSpU4WLi4s4efKkRZ+3yuuvvy4eeeSRGt+vCRNsPUycOFEEBweLs2fPWhyj1+tFQUGByMrKEjNnzhQtWrQQv/76a51xRUVFws/PTxw5csS4zdIEe7crV64ILy8viw5NOzs7i/DwcJNtkyZNEo899li9x42KihJPPfWUxf3Xr18vAgMDxfr168XRo0fF6tWrhbe3t8XJvbCwUERERAgAwsnJSfTo0UOMHj1ahIaG1hhjiwn21q1bYsiQIaJLly5Cq9XWK/769euioKBA7Nu3T4wbN060atVKXLhwodbYrKws0bJlS5N/CNUnwd7t1KlTFh2arvo7/cILL5j0GzJkiHj++efrNW5ISIiIj483+5652I8//lg8/PDDIjU1VRw5ckR88cUXolmzZmLHjh11xmZlZYmwsDDj92zQoEEiJiZGREdHm/Qz93thaYKt67emtgRbV6xWqxU9e/YU0dHR4tatW/WKv3r1qjh58qTIzMwUQ4YMEV27djX5R4252K1bt4p27dqJa9euGbeZ+/9q6e/rrl27qh2aNhdb9Xc5ISHBJL5Tp05i5syZFo9bUVEhVCqV+OSTT2qdlzl2k2D1er1wcnKq9ocyZswYMXToUIv3Y22CjYuLE4GBgeL06dP1jr3TwIEDxWuvvVZnv5SUFONf4KoGQCgUCuHk5FRtdVCX7t27m3ypaqLRaEz+pSmEEP/4xz+EWq2u13i//fabaNKkidiyZYvFMYGBgeLLL7802TZ37lwREhJSr7GvX79uTJCjRo0STz75ZI197/4+VCWHuxNjRESEmDx5cq2xd7I2wd66dUsMHz5cdO7cWVy6dMniedekXbt21Y4C3B376aefGr9Xd37XmjRpIoKDg60at0WLFmLp0qW1xur1etG0aVMxd+5ck35vvvmm6N27t8Xj7tmzRwAQubm5Zt+/O7aiokI4OztXO18/fvx4MWjQIIvHvXr1qigrKxNC/HV9yBtvvGF8r6bfi6rkcHdi1Gg0YuHChbXG3qmmBFtXrE6nE+Hh4WLgwIFmV/v1+Z3T6/XC3d1drFu3rtbYKVOm1Pj96tevX73HvX79ugAg0tLSao09ffq0ACDWrFljsn3UqFHGI0OWjLt69Wrh7Oxs/LOuD7s5B+vi4oJu3bph165dxm0GgwG7du2q1znN+hJCID4+HikpKdi9ezdat27doP0ZDAbjeZzaDBw4EMeOHUNubq6xde/eHaNHj0Zubi6cnJwsHvP69es4deoUAgIC6uzbp0+fape6nzx5EsHBwRaPBwDJycnw8/PD4MGDLY6pqKioVsTYyckJBoOhXmN7eHggICAAV65cwfbt2zFs2DCLY1u3bg1/f3+T75lOp8OBAwdk/Z4Bf92qM2rUKBQUFGDnzp3w8fFp8D4t+b69/PLLOHr0qMl3Ta1WY8aMGdi+fXu9xzx37hz++OOPOr9vLi4u6NGjR4O/b8uXL0e3bt0sOtcM/PX/+fbt2w3+rqlUKvj6+qKgoABZWVkYNmxYnb8X3bp1g7Ozs8n3Kz8/H0VFRXjssces/q2x5HdKp9MhKioKLi4uSE1NNTmPbM3vnPhrgYabN2/WGjtz5sxq3y8A+PTTT7FixYp6j1sV7+/vX2tsq1atoFarzX6/NBqNxeMuX74cQ4cOha+vb51zu5vNFVyvzfTp0xEbG4vu3bujZ8+eWLRoEcrLy/HKK6/UGnf9+nUUFhYaX585cwa5ubnw9vaGRqOpNTYuLg7r1q3D1q1b4enpidLSUgB//eVyc3OrNTYhIQExMTHQaDS4du0a1q1bh4yMDIt+tDw9PdGxY0eTbR4eHvDx8am2/W7//d//jSFDhiA4OBglJSVITEyEk5MTXnjhhTrHnTZtGnr37o0PP/wQo0aNwsGDB7Fs2TIsW7asztgqBoMBycnJiI2NNXsBRU2GDBmCDz74ABqNBh06dMDhw4excOFCjBs3zqL4qlsHQkJCUFhYiBkzZiA0NLTa96Ou78PUqVPx97//HQ899BBat26NWbNmQa1WY/jw4XXGXr58GUVFRcb7V6v+cvv7+6NZs2Y1xgYEBODZZ59FTk4Otm3bhsrKSuN3zdvbGy4uLrWO7ePjgw8++ABDhw5FQEAALl26hMWLF6O4uBgjR46sc953J3NnZ2f4+/sjJCSk1lhvb2/MmTMHI0aMgL+/P06dOoU333wT7dq1w6BBg+ocd8aMGXjuuecQERGBAQMGIC0tDd9//z0yMjIs+nur0+mwadMmLFiwoF5/xv369cOMGTPg5uaG4OBgZGZmYvXq1Vi4cGGdsZs2bYKvry80Gg2OHTuGKVOmYPjw4YiKisIbb7xR6++FSqXC+PHjMX36dHh7e8PLywuTJk1CeHg41qxZU+dvTWlpKUpLS43zO3bsGDw9PfH5559j8+bNNcZWJdeKigqsXbsWOp0OOp0OAODr64tJkybVOvbp06exYcMGREVFwdfXF+fOncO8efPg5uaGPXv2ICUlpcZYf39/sxc2aTQafPLJJ7WOe+rUKaxbtw5PPvkkfHx8cPToUUybNg0RERH46quvao1VKBSYMWMGEhMTERYWhkcffRSrVq3CiRMn0L59e/zwww91/q4XFhZiz549+PHHH6vN3yL1XvM2si+++EJoNBrh4uIievbsKfbv319nTNXhlLtbbGxsnbHm4gCI5OTkOmPHjRsngoODhYuLi/D19RUDBw4U//rXvyz4lOZZeg72ueeeEwEBAcLFxUU8+OCD4rnnnqt2MUJtvv/+e9GxY0ehVCpFaGioWLZsWb3muX37dgFA5Ofn1ytOp9OJKVOmCI1GI1xdXUWbNm3EO++8I/R6vUXxGzZsEG3atBEuLi7C399fxMXFiatXr1brV9f3wWAwiFmzZomWLVsKpVIpBg4caPwsdcUmJyebfT8xMbHW2KpDyuZaenp6nWPfuHFDPP3000KtVgsXFxcREBAghg4darzIqb5/B+48B1tbbEVFhYiKihK+vr7C2dlZBAcHiwkTJojS0lKLx12+fLlo166dcHV1FWFhYcbTCpbEfvXVV8LNza3an3NdsefPnxdjx44VarVauLq6ipCQELFgwQJhMBjqjP3ss89EYGCgcHZ2FhqNRrz77rvG76glvxc3btwQb7zxhmjevLlwd3cXTz/9tPGCr7piExMTa+xXW2xNnwlArd+9qvji4mIRExMj/Pz8hLOzswgMDBQvvviiOHHihFW/kfjfQ+91xRYVFYmIiAjh7e0tlEqlaNeunZgxY4bxFjRLxk1KShKBgYHC3d1dhIeHi59//tni2ISEBBEUFCQqKytr/Cy1Ybk6IiIiGdjNOVgiIiJ7wgRLREQkAyZYIiIiGTDBEhERyYAJloiISAZMsERERDJggiUiIpIBEywREZEMmGCJiIhkwARLREQkAyZYIiIiGTDBEhERyeD/A+EtXARR1fQxAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# obtain one batch of test images\n",
"dataiter = iter(test_input_output)\n",
"input, expected_output, offset = next(dataiter)\n",
"\n",
"# get sample outputs\n",
"output = model(input)\n",
"\n",
"output_tensor = output.cpu().detach()\n",
"#print(\"output_tensor.shape\", output_tensor.shape)\n",
"output_tensor = output_tensor.permute(1, 2, 0)\n",
"#print(\"output_tensor.shape\", output_tensor.shape)\n",
"output_numpy = output_tensor.numpy()\n",
"#print(\"output_numpy.shape\", output_numpy.shape)\n",
"\n",
"from color_xy import xy_to_color\n",
"\n",
"deobfuscated = []\n",
"COLOR_UNDEFINED = 10\n",
"for y in range(0,IMAGE_SIZE):\n",
" columns2 = [COLOR_UNDEFINED] * IMAGE_SIZE\n",
" deobfuscated.append(columns2)\n",
"adjustment = int(offset * 10.0)\n",
"for row_index, row in enumerate(output_numpy):\n",
" #print(\"row_index\", row_index)\n",
" for column_index, pixel_data in enumerate(row):\n",
" color_float = pixel_data[0]\n",
" color_int = (int(color_float * 11.0) + 10 - adjustment) % 10\n",
" if color_float >= 0.99:\n",
" color_int = 10\n",
" deobfuscated[row_index][column_index] = color_int\n",
"\n",
"pixels = np.array(deobfuscated, np.int32)\n",
"result = ajm.Image(pixels, \"predicted\")\n",
"result.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "789a56c4-e809-462c-8a02-ad6fff0922c0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|