File size: 58,256 Bytes
d5bfab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "929a1d7b-51a8-44ed-ab3b-8b2a2baa31dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "import arc_json_model as ajm\n",
    "from visualize import ajm_image_show\n",
    "\n",
    "ajm.Image.show = ajm_image_show"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "bcc018d5-5c3e-4acc-a9fd-e670d8a21c27",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import numpy as np\n",
    "from torchvision import datasets\n",
    "import torchvision.transforms as transforms\n",
    "from torchsummary import summary\n",
    "from tqdm import tqdm\n",
    "\n",
    "\n",
    "device = torch.device(\"mps\")\n",
    "#device = torch.device(\"cuda\")\n",
    "#device = torch.device(\"cpu\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "fbaa81fe-7682-4cb3-9f57-fe94d5dd4fa4",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAHqCAYAAACN266QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjHElEQVR4nO3de3BU9fnH8c9mIZuIycqdRBJuChEQFBAMiDdQy2QQdUTUOEai44wTFMrIKGVsYCgGbEu9IYJ1wKrcREFlxIgoIEUlgFHwwkVFUkDQDuxClEV3z++PTvPrNhfyhGzOLn2/Zr5/7MmePc9sL2/OOZuNx3EcRwAAoF6S3B4AAIBEQjgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDiBONK5c2fdddddbo9R5corr9SVV17p9hhAXCGcgMGmTZs0depUHT161O1R6u3o0aO699571bZtW7Vo0UJXXXWVtm3b5vZYQMLy8F21QP396U9/0qRJk/Ttt9+qc+fOjf76oVBISUlJat68eaO8XiQS0dChQ/Xpp59q0qRJatOmjZ555hlVVFRo69atOv/88+vc/+TJk5Kk5OTkRpkHOBM0c3sA4EwViUR08uRJpaSk1Hsfn8/XqDMsX75cmzZt0iuvvKKbb75ZknTLLbeoe/fuKi4u1qJFi+rcn2AC1XGpFqinqVOnatKkSZKkLl26yOPxyOPxaO/evZIkj8ejcePG6eWXX1avXr3k8/n09ttvS/rXmergwYPVunVrpaamqn///lq+fHm1Y/z3Pc6FCxfK4/Ho73//uyZOnFh1ufXGG2/UDz/8cMqZly9frvbt2+umm26q2ta2bVvdcsstev311xUKherc/7/vca5bt04ej0fLli3TjBkz1LFjR6WkpGjYsGHas2fPKecBzgSccQL1dNNNN2nXrl1avHix/vKXv6hNmzaS/hWif3vvvfe0bNkyjRs3Tm3atKm6nPvEE0/o+uuvV35+vk6ePKklS5Zo9OjRWrVqlfLy8k557Pvvv18tW7ZUcXGx9u7dq8cff1zjxo3T0qVL69zvk08+Ub9+/ZSUFP1v5IEDB2r+/PnatWuXLrzwQuM7Ic2cOVNJSUl68MEHFQgE9Nhjjyk/P18ff/yx+bWAREM4gXrq06eP+vXrp8WLF+uGG26o8R7nzp07tX37dvXs2TNq+65du5Samlr1eNy4cerXr59mz55dr3C2bt1a77zzjjwej6R/XQZ+8sknFQgE5Pf7a93v4MGDuvzyy6ttz8jIkCQdOHCgQeE8ceKEysvLqy7ltmzZUuPHj9eOHTvUu3dv8+sBiYRLtUAjuuKKK6pFU1JUNI8cOaJAIKChQ4fW+9Ot9957b1U0JWno0KEKh8P67rvv6tzv559/rvG+6b/vu/7888/1Ov5/Gzt2bNT9z6FDh0qSvvnmmwa9HpBIOOMEGlGXLl1q3L5q1Sr94Q9/UHl5edR9xf+MYV2ys7OjHrds2VLSvyJcl9TU1BrvY544caLq5w3R0HmAMwFnnEAjqilEH3zwga6//nqlpKTomWee0VtvvaU1a9bo9ttvV31/G8zr9da4/VT7Z2Rk6ODBg9W2/3tbZmZmvY7fWPMAZwLOOAGD+p4h/qdXX31VKSkpKi0tjbpsumDBgsYcrUYXXXSRPvjgA0UikagPCH388cc666yz1L1795jPAJxpOOMEDFq0aCFJpm8O8nq98ng8CofDVdv27t2rlStXNvJ01d188806dOiQXnvttaptP/74o1555RWNHDmy0X9vFPhfwBknYNC/f39J0pQpU3TrrbeqefPmGjlyZFVQa5KXl6fZs2frN7/5jW6//XYdPnxYc+bM0XnnnafPPvsspvPefPPNuvTSSzV27Fh98cUXVd8cFA6HNW3atJgeGzhTEU7A4JJLLtH06dP17LPP6u2331YkEtG3335bZzivvvpqPf/885o5c6YmTJigLl26aNasWdq7d2/Mw+n1evXWW29p0qRJevLJJ/Xzzz/rkksu0cKFC9WjR4+YHhs4U/FdtQAAGHCPEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGDT573FGIhEdOHBAaWlpDfr6MgAAYsFxHB07dkyZmZnV/obtf2rycB44cEBZWVlNfVgAAOqloqJCHTt2rPXnTX6pNi0trakPCQBAvZ2qU00eTi7PAgDi2ak6xYeDAAAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAQYPCOWfOHHXu3FkpKSkaNGiQNm/e3NhzAQAQl8zhXLp0qSZOnKji4mJt27ZNffv21XXXXafDhw/HYj4AAOKLYzRw4ECnqKio6nE4HHYyMzOdkpKSeu0fCAQcSSwWi8VixeUKBAJ1dsx0xnny5Elt3bpVw4cPr9qWlJSk4cOH68MPP7S8FAAACamZ5ck//vijwuGw2rdvH7W9ffv2+uqrr2rcJxQKKRQKVT0OBoMNGBMAgPgQ80/VlpSUyO/3V62srKxYHxIAgJgxhbNNmzbyer06dOhQ1PZDhw6pQ4cONe4zefJkBQKBqlVRUdHwaQEAcJkpnMnJyerfv7/Wrl1btS0SiWjt2rXKzc2tcR+fz6f09PSoBQBAojLd45SkiRMnqqCgQAMGDNDAgQP1+OOPq7KyUmPHjo3FfAAAxBVzOMeMGaMffvhBv//97/X999/roosu0ttvv13tA0MAAJyJPI7jOE15wGAwKL/f35SHBACg3gKBQJ23FfmuWgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwMIdzw4YNGjlypDIzM+XxeLRy5coYjAUAQHwyh7OyslJ9+/bVnDlzYjEPAABxrZl1hxEjRmjEiBGxmAUAgLjHPU4AAAzMZ5xWoVBIoVCo6nEwGIz1IQEAiJmYn3GWlJTI7/dXraysrFgfEgCAmIl5OCdPnqxAIFC1KioqYn1IAABiJuaXan0+n3w+X6wPAwBAkzCH8/jx49qzZ0/V42+//Vbl5eVq1aqVsrOzG3U4AADijmP0/vvvO5KqrYKCgnrtHwgEatyfxWKxWKx4WIFAoM6OeRzHcdSEgsGg/H5/Ux4SAIB6CwQCSk9Pr/Xn/B4nAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADEzhLCkp0SWXXKK0tDS1a9dON9xwg3bu3Bmr2QAAiDumcK5fv15FRUX66KOPtGbNGv3yyy+69tprVVlZGav5AACIKx7HcZyG7vzDDz+oXbt2Wr9+vS6//PJ67RMMBuX3+xt6SAAAYioQCCg9Pb3Wnzc73ReXpFatWtX6nFAopFAoVPU4GAyeziEBAHBVgz8cFIlENGHCBA0ZMkS9e/eu9XklJSXy+/1VKysrq6GHBADAdQ2+VHvfffdp9erV2rhxozp27Fjr82o64ySeAIB4FZNLtePGjdOqVau0YcOGOqMpST6fTz6fryGHAQAg7pjC6TiO7r//fq1YsULr1q1Tly5dYjUXAABxyRTOoqIiLVq0SK+//rrS0tL0/fffS5L8fr9SU1NjMiAAAPHEdI/T4/HUuH3BggW666676vUa/DoKACCeNeo9ztP4lU8AAM4IfFctAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwMP1ZMeB0OXvcnqD+POe5PUH9JMp7mijvJ3AqnHECAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAwBTOuXPnqk+fPkpPT1d6erpyc3O1evXqWM0GAEDcMYWzY8eOmjlzprZu3aotW7bo6quv1qhRo/T555/Haj4AAOKKx3Ec53ReoFWrVvrjH/+ou+++u17PDwaD8vv9p3NIJDBnj9sT1J/nPLcnqJ9EeU8T5f0EAoGA0tPTa/15s4a+cDgc1iuvvKLKykrl5uY29GUAAEgo5nBu375dubm5OnHihM4++2ytWLFCPXv2rPX5oVBIoVCo6nEwGGzYpAAAxAHzp2p79Oih8vJyffzxx7rvvvtUUFCgL774otbnl5SUyO/3V62srKzTGhgAADed9j3O4cOHq1u3bpo3b16NP6/pjJN4/u9KlPtxUuLck0uU9zRR3k8gZvc4/y0SiUSF8b/5fD75fL7TPQwAAHHBFM7JkydrxIgRys7O1rFjx7Ro0SKtW7dOpaWlsZoPAIC4Ygrn4cOHdeedd+rgwYPy+/3q06ePSktLdc0118RqPgAA4oopnM8//3ys5gAAICHwXbUAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYGD6e5zA6fKc5/YEZx7eU6BpccYJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAg9MK58yZM+XxeDRhwoRGGgcAgPjW4HCWlZVp3rx56tOnT2POAwBAXGtQOI8fP678/Hw999xzatmyZWPPBABA3GpQOIuKipSXl6fhw4ef8rmhUEjBYDBqAQCQqJpZd1iyZIm2bdumsrKyej2/pKRE06ZNMw8GAEA8Mp1xVlRUaPz48Xr55ZeVkpJSr30mT56sQCBQtSoqKho0KAAA8cDjOI5T3yevXLlSN954o7xeb9W2cDgsj8ejpKQkhUKhqJ/VJBgMyu/3N3xiAABiKBAIKD09vdafmy7VDhs2TNu3b4/aNnbsWOXk5Oihhx46ZTQBAEh0pnCmpaWpd+/eUdtatGih1q1bV9sOAMCZiG8OAgDAwHSPszFwjxMAEM9OdY+TM04AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBg+kPWwOly9rg9Qf15znN7gvpJlPc0Ud5P4FQ44wQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAICBKZxTp06Vx+OJWjk5ObGaDQCAuNPMukOvXr307rvv/v8LNDO/BAAACctcvWbNmqlDhw6xmAUAgLhnvse5e/duZWZmqmvXrsrPz9e+fftiMRcAAHHJdMY5aNAgLVy4UD169NDBgwc1bdo0DR06VDt27FBaWlqN+4RCIYVCoarHwWDw9CYGAMBFHsdxnIbufPToUXXq1EmzZ8/W3XffXeNzpk6dqmnTpjV4QJxZnD1uT1B/nvPcnqB+EuU9TZT3EwgEAkpPT6/156f16yjnnHOOunfvrj17av9f7uTJkxUIBKpWRUXF6RwSAABXnVY4jx8/rq+//loZGRm1Psfn8yk9PT1qAQCQqEzhfPDBB7V+/Xrt3btXmzZt0o033iiv16vbbrstVvMBABBXTB8O+sc//qHbbrtN//znP9W2bVtddtll+uijj9S2bdtYzQcAQFwxhXPJkiWxmgMAgITAd9UCAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAAD058VA06X5zy3Jzjz8J4CTYszTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABiYw7l//37dcccdat26tVJTU3XhhRdqy5YtsZgNAIC408zy5CNHjmjIkCG66qqrtHr1arVt21a7d+9Wy5YtYzUfAABxxRTOWbNmKSsrSwsWLKja1qVLl0YfCgCAeGW6VPvGG29owIABGj16tNq1a6eLL75Yzz33XKxmAwAg7pjC+c0332ju3Lk6//zzVVpaqvvuu08PPPCAXnjhhVr3CYVCCgaDUQsAgITlGDRv3tzJzc2N2nb//fc7l156aa37FBcXO5JYLBaLxUqIFQgE6myh6YwzIyNDPXv2jNp2wQUXaN++fbXuM3nyZAUCgapVUVFhOSQAAHHF9OGgIUOGaOfOnVHbdu3apU6dOtW6j8/nk8/na9h0AADEG8ul2s2bNzvNmjVzZsyY4ezevdt5+eWXnbPOOst56aWX6v0agUDA9dNwFovFYrFqW6e6VGsKp+M4zptvvun07t3b8fl8Tk5OjjN//nzT/oSTxWKxWPG8ThVOj+M4jppQMBiU3+9vykMCAFBvgUBA6enptf6c76oFAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAgSmcnTt3lsfjqbaKiopiNR8AAHGlmeXJZWVlCofDVY937Niha665RqNHj270wQAAiEemcLZt2zbq8cyZM9WtWzddccUVjToUAADxyhTO/3Ty5Em99NJLmjhxojweT63PC4VCCoVCVY+DwWBDDwkAgOsa/OGglStX6ujRo7rrrrvqfF5JSYn8fn/VysrKaughAQBwncdxHKchO1533XVKTk7Wm2++WefzajrjJJ4AgHgVCASUnp5e688bdKn2u+++07vvvqvXXnvtlM/1+Xzy+XwNOQwAAHGnQZdqFyxYoHbt2ikvL6+x5wEAIK6ZwxmJRLRgwQIVFBSoWbMGf7YIAICEZA7nu+++q3379qmwsDAW8wAAENca/OGghgoGg/L7/U15SAAA6u1UHw7iu2oBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwMAUznA4rEceeURdunRRamqqunXrpunTp8txnFjNBwBAXGlmefKsWbM0d+5cvfDCC+rVq5e2bNmisWPHyu/364EHHojVjAAAxA1TODdt2qRRo0YpLy9PktS5c2ctXrxYmzdvjslwAADEG9Ol2sGDB2vt2rXatWuXJOnTTz/Vxo0bNWLEiJgMBwBAvDGdcT788MMKBoPKycmR1+tVOBzWjBkzlJ+fX+s+oVBIoVCo6nEwGGz4tAAAuM0xWLx4sdOxY0dn8eLFzmeffeb87W9/c1q1auUsXLiw1n2Ki4sdSSwWi8ViJcQKBAJ1ttAUzo4dOzpPP/101Lbp06c7PXr0qHWfEydOOIFAoGpVVFS4/qawWCwWi1XbOlU4TZdqf/rpJyUlRd8W9Xq9ikQite7j8/nk8/kshwEAIG6Zwjly5EjNmDFD2dnZ6tWrlz755BPNnj1bhYWFsZoPAID4YrlUGwwGnfHjxzvZ2dlOSkqK07VrV2fKlClOKBSq92sEAgHXT8NZLBaLxaptnepSrcdxmvZrf4LBoPx+f1MeEgCAegsEAkpPT6/153xXLQAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAwIJwAABoQTAAADwgkAgAHhBADAgHACAGBAOAEAMCCcAAAYEE4AAAzM4Tx27JgmTJigTp06KTU1VYMHD1ZZWVksZgMAIO6Yw3nPPfdozZo1evHFF7V9+3Zde+21Gj58uPbv3x+L+QAAiC+OwU8//eR4vV5n1apVUdv79evnTJkypV6vEQgEHEksFovFYsXlCgQCdXasmQx+/fVXhcNhpaSkRG1PTU3Vxo0ba9wnFAopFApVPQ4Gg5ZDAgAQV0yXatPS0pSbm6vp06frwIEDCofDeumll/Thhx/q4MGDNe5TUlIiv99ftbKyshplcAAA3OBxHMex7PD111+rsLBQGzZskNfrVb9+/dS9e3dt3bpVX375ZbXn13TGSTwBAPEqEAgoPT291p+bLtVKUrdu3bR+/XpVVlYqGAwqIyNDY8aMUdeuXWt8vs/nk8/nsx4GAIC41ODf42zRooUyMjJ05MgRlZaWatSoUY05FwAAccl8qba0tFSO46hHjx7as2ePJk2apJSUFH3wwQdq3rz5KfcPBoPy+/0NHhgAgFg61aVa8xlnIBBQUVGRcnJydOedd+qyyy5TaWlpvaIJAECiM59xni7OOAEA8azRzzgBAPhfRjgBADAgnAAAGBBOAAAMCCcAAAaEEwAAA8IJAIAB4QQAwIBwAgBgQDgBADAgnAAAGBBOAAAMCCcAAAZNHs4m/mMsAACYnKpTTR7OY8eONfUhAQCot1N1qsn/HmckEtGBAweUlpYmj8fTKK8ZDAaVlZWlioqKOv+GmtsSZU4pcWZlzsaXKLMmypxS4sz6vz6n4zg6duyYMjMzlZRU+3lls0Y7Yj0lJSWpY8eOMXnt9PT0uP4P+98SZU4pcWZlzsaXKLMmypxS4sz6vzyn3+8/5XP4cBAAAAaEEwAAgzMinD6fT8XFxfL5fG6PUqdEmVNKnFmZs/ElyqyJMqeUOLMyZ/00+YeDAABIZGfEGScAAE2FcAIAYEA4AQAwIJwAABgkfDjnzJmjzp07KyUlRYMGDdLmzZvdHqmaDRs2aOTIkcrMzJTH49HKlSvdHqlGJSUluuSSS5SWlqZ27drphhtu0M6dO90eq0Zz585Vnz59qn4BOjc3V6tXr3Z7rFOaOXOmPB6PJkyY4PYoUaZOnSqPxxO1cnJy3B6rVvv379cdd9yh1q1bKzU1VRdeeKG2bNni9lhROnfuXO099Xg8Kioqcnu0asLhsB555BF16dJFqamp6tatm6ZPnx6X3y1+7NgxTZgwQZ06dVJqaqoGDx6ssrKyJp0hocO5dOlSTZw4UcXFxdq2bZv69u2r6667TocPH3Z7tCiVlZXq27ev5syZ4/YodVq/fr2Kior00Ucfac2aNfrll1907bXXqrKy0u3RqunYsaNmzpyprVu3asuWLbr66qs1atQoff75526PVquysjLNmzdPffr0cXuUGvXq1UsHDx6sWhs3bnR7pBodOXJEQ4YMUfPmzbV69Wp98cUX+vOf/6yWLVu6PVqUsrKyqPdzzZo1kqTRo0e7PFl1s2bN0ty5c/X000/ryy+/1KxZs/TYY4/pqaeecnu0au655x6tWbNGL774orZv365rr71Ww4cP1/79+5tuCCeBDRw40CkqKqp6HA6HnczMTKekpMTFqeomyVmxYoXbY9TL4cOHHUnO+vXr3R6lXlq2bOn89a9/dXuMGh07dsw5//zznTVr1jhXXHGFM378eLdHilJcXOz07dvX7THq5aGHHnIuu+wyt8cwGz9+vNOtWzcnEom4PUo1eXl5TmFhYdS2m266ycnPz3dpopr99NNPjtfrdVatWhW1vV+/fs6UKVOabI6EPeM8efKktm7dquHDh1dtS0pK0vDhw/Xhhx+6ONmZIxAISJJatWrl8iR1C4fDWrJkiSorK5Wbm+v2ODUqKipSXl5e1H9f483u3buVmZmprl27Kj8/X/v27XN7pBq98cYbGjBggEaPHq127drp4osv1nPPPef2WHU6efKkXnrpJRUWFjbaH7doTIMHD9batWu1a9cuSdKnn36qjRs3asSIES5PFu3XX39VOBxWSkpK1PbU1NQmvULS5F/y3lh+/PFHhcNhtW/fPmp7+/bt9dVXX7k01ZkjEolowoQJGjJkiHr37u32ODXavn27cnNzdeLECZ199tlasWKFevbs6fZY1SxZskTbtm1r8vswFoMGDdLChQvVo0cPHTx4UNOmTdPQoUO1Y8cOpaWluT1elG+++UZz587VxIkT9bvf/U5lZWV64IEHlJycrIKCArfHq9HKlSt19OhR3XXXXW6PUqOHH35YwWBQOTk58nq9CofDmjFjhvLz890eLUpaWppyc3M1ffp0XXDBBWrfvr0WL16sDz/8UOedd16TzZGw4URsFRUVaceOHXF7n0uSevToofLycgUCAS1fvlwFBQVav359XMWzoqJC48eP15o1a6r9Kzme/OeZRZ8+fTRo0CB16tRJy5Yt09133+3iZNVFIhENGDBAjz76qCTp4osv1o4dO/Tss8/GbTiff/55jRgxQpmZmW6PUqNly5bp5Zdf1qJFi9SrVy+Vl5drwoQJyszMjLv39MUXX1RhYaHOPfdceb1e9evXT7fddpu2bt3aZDMkbDjbtGkjr9erQ4cORW0/dOiQOnTo4NJUZ4Zx48Zp1apV2rBhQ8z+BFxjSE5OrvpXZv/+/VVWVqYnnnhC8+bNc3my/7d161YdPnxY/fr1q9oWDoe1YcMGPf300wqFQvJ6vS5OWLNzzjlH3bt31549e9wepZqMjIxq/zi64IIL9Oqrr7o0Ud2+++47vfvuu3rttdfcHqVWkyZN0sMPP6xbb71VknThhRfqu+++U0lJSdyFs1u3blq/fr0qKysVDAaVkZGhMWPGqGvXrk02Q8Le40xOTlb//v21du3aqm2RSERr166N2/tc8c5xHI0bN04rVqzQe++9py5durg9kkkkElEoFHJ7jCjDhg3T9u3bVV5eXrUGDBig/Px8lZeXx2U0Jen48eP6+uuvlZGR4fYo1QwZMqTar0nt2rVLnTp1cmmiui1YsEDt2rVTXl6e26PU6qeffqr2h5u9Xq8ikYhLE51aixYtlJGRoSNHjqi0tFSjRo1qsmMn7BmnJE2cOFEFBQUaMGCABg4cqMcff1yVlZUaO3as26NFOX78eNS/3L/99luVl5erVatWys7OdnGyaEVFRVq0aJFef/11paWl6fvvv5f0rz/smpqa6vJ00SZPnqwRI0YoOztbx44d06JFi7Ru3TqVlpa6PVqUtLS0aveIW7RoodatW8fVveMHH3xQI0eOVKdOnXTgwAEVFxfL6/Xqtttuc3u0an77299q8ODBevTRR3XLLbdo8+bNmj9/vubPn+/2aNVEIhEtWLBABQUFatYsfv/vduTIkZoxY4ays7PVq1cvffLJJ5o9e7YKCwvdHq2a0tJSOY6jHj16aM+ePZo0aZJycnKa9v/3m+zzuzHy1FNPOdnZ2U5ycrIzcOBA56OPPnJ7pGref/99R1K1VVBQ4PZoUWqaUZKzYMECt0erprCw0OnUqZOTnJzstG3b1hk2bJjzzjvvuD1WvcTjr6OMGTPGycjIcJKTk51zzz3XGTNmjLNnzx63x6rVm2++6fTu3dvx+XxOTk6OM3/+fLdHqlFpaakjydm5c6fbo9QpGAw648ePd7Kzs52UlBSna9euzpQpU5xQKOT2aNUsXbrU6dq1q5OcnOx06NDBKSoqco4ePdqkM/BnxQAAMEjYe5wAALiBcAIAYEA4AQAwIJwAABgQTgAADAgnAAAGhBMAAAPCCQCAAeEEAMCAcAIAYEA4AQAwIJwAABj8HyidmhRCSWP+AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 500x500 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "filename = 'testdata/af902bf9.json'\n",
    "#filename = 'testdata/62c24649.json'\n",
    "#filename = 'testdata/a699fb00.json'\n",
    "#filename = 'testdata/f76d97a5.json'\n",
    "#filename = 'testdata/f5b8619d.json'\n",
    "task = ajm.Task.load(filename)\n",
    "image = task.pairs[0].input\n",
    "image.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "8e2d17ed-0262-4915-a6e6-a5459b5a09ab",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "len(train_input_output) 21\n",
      "len(test_input_output) 7\n"
     ]
    }
   ],
   "source": [
    "from color_xy import color_to_xy\n",
    "\n",
    "# TODO: get it to work with size 30x30\n",
    "IMAGE_SIZE = 28\n",
    "\n",
    "def obfuscate_image(image: ajm.Image, offset: float) -> np.ndarray:\n",
    "    # empty image with size: IMAGE_SIZE x IMAGE_SIZE\n",
    "    # each pixel is an array with the 2 obfuscated [x,y] values\n",
    "    rows2 = []\n",
    "    for y in range(0,IMAGE_SIZE):\n",
    "        columns2 = [[0.0, 0.0]] * IMAGE_SIZE\n",
    "        rows2.append(columns2)\n",
    "    # assign obfuscated values\n",
    "    for row_index, rows in enumerate(image.pixels):\n",
    "        for column_index, pixel in enumerate(rows):\n",
    "            xy = color_to_xy(pixel, 10, offset)\n",
    "            rows2[row_index][column_index] = xy\n",
    "    obfuscated_image = np.array(rows2)\n",
    "    return obfuscated_image\n",
    "\n",
    "def numpy_image_to_tensors(obfuscated_image: np.ndarray, device: torch.device) -> torch.Tensor:\n",
    "    tensors = torch.from_numpy(obfuscated_image)\n",
    "    #print(tensors)\n",
    "    # cast it to 32-bit floating point tensor\n",
    "    tensors = tensors.type('torch.FloatTensor')\n",
    "    #print(tensors)\n",
    "    #print(\"before\", tensors.shape)\n",
    "    # change layout from: rows -> columns -> obfuscated_pixel_array\n",
    "    # change layout to:  obfuscated_pixel_array -> rows -> columns\n",
    "    tensors = tensors.permute(2, 0, 1)\n",
    "    #print(\"after\", tensors.shape)\n",
    "    tensors_on_device = tensors.to(device)\n",
    "    return tensors_on_device\n",
    "    \n",
    "all_images = []\n",
    "for pair in task.pairs:\n",
    "    all_images.append(pair.input)\n",
    "    all_images.append(pair.output)\n",
    "\n",
    "train_input_output = []\n",
    "test_input_output = []\n",
    "number_of_offsets = 7\n",
    "for i in range(0, number_of_offsets):\n",
    "    offset = float(i) / float(number_of_offsets)\n",
    "    if i == 0:\n",
    "        offset = 0.0\n",
    "    if i == 1:\n",
    "        offset = 0.25\n",
    "    if i == 2:\n",
    "        offset = 0.5\n",
    "    if i == 3:\n",
    "        offset = 0.75\n",
    "    if i == 4:\n",
    "        offset = 0.125\n",
    "    if i == 5:\n",
    "        offset = 0.375\n",
    "    if i == 6:\n",
    "        offset = 0.625\n",
    "    if i == 7:\n",
    "        offset = 0.330823\n",
    "    if i == 8:\n",
    "        offset = 0.23\n",
    "    if i == 9:\n",
    "        offset = 0.893\n",
    "    if i == 10:\n",
    "        offset = 0.01111\n",
    "    if i == 11:\n",
    "        offset = 0.71313\n",
    "    if i == 12:\n",
    "        offset = 0.91555\n",
    "    if i == 13:\n",
    "        offset = 0.51717\n",
    "    \n",
    "    for pair in task.pairs:\n",
    "        input_image = obfuscate_image(pair.input, offset)\n",
    "        output_image = obfuscate_image(pair.output, offset)\n",
    "        input_tensors = numpy_image_to_tensors(input_image, device)\n",
    "        output_tensors = numpy_image_to_tensors(output_image, device)\n",
    "        input_output_offset = (input_tensors, output_tensors, offset)\n",
    "        if pair.pair_type == ajm.PairType.TRAIN:\n",
    "            train_input_output.append(input_output_offset)\n",
    "        else:\n",
    "            test_input_output.append(input_output_offset)\n",
    "print(\"len(train_input_output)\", len(train_input_output))\n",
    "print(\"len(test_input_output)\", len(test_input_output))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "45e2653e-3539-4b61-ade5-18a193c93616",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ConvAutoencoder(\n",
      "  (conv1): Conv2d(2, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
      "  (conv2): Conv2d(16, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
      "  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
      "  (t_conv1): ConvTranspose2d(8, 16, kernel_size=(2, 2), stride=(2, 2))\n",
      "  (t_conv2): ConvTranspose2d(16, 2, kernel_size=(2, 2), stride=(2, 2))\n",
      ")\n",
      "----------------------------------------------------------------\n",
      "        Layer (type)               Output Shape         Param #\n",
      "================================================================\n",
      "            Conv2d-1           [-1, 16, 30, 30]             304\n",
      "         MaxPool2d-2           [-1, 16, 15, 15]               0\n",
      "            Conv2d-3            [-1, 8, 15, 15]           1,160\n",
      "         MaxPool2d-4              [-1, 8, 7, 7]               0\n",
      "   ConvTranspose2d-5           [-1, 16, 14, 14]             528\n",
      "   ConvTranspose2d-6            [-1, 2, 28, 28]             130\n",
      "================================================================\n",
      "Total params: 2,122\n",
      "Trainable params: 2,122\n",
      "Non-trainable params: 0\n",
      "----------------------------------------------------------------\n",
      "Input size (MB): 0.01\n",
      "Forward/backward pass size (MB): 0.19\n",
      "Params size (MB): 0.01\n",
      "Estimated Total Size (MB): 0.20\n",
      "----------------------------------------------------------------\n"
     ]
    }
   ],
   "source": [
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "\n",
    "# define the NN architecture\n",
    "class ConvAutoencoder(nn.Module):\n",
    "    def __init__(self):\n",
    "        super(ConvAutoencoder, self).__init__()\n",
    "        ## encoder layers ##\n",
    "        # conv layer (depth from 2 --> 16), 3x3 kernels\n",
    "        self.conv1 = nn.Conv2d(2, 16, 3, padding=1)  \n",
    "        # conv layer (depth from 16 --> 4), 3x3 kernels\n",
    "        self.conv2 = nn.Conv2d(16, 8, 3, padding=1)\n",
    "        # pooling layer to reduce x-y dims by two; kernel and stride of 2\n",
    "        self.pool = nn.MaxPool2d(2, 2)\n",
    "        \n",
    "        ## decoder layers ##\n",
    "        ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2\n",
    "        self.t_conv1 = nn.ConvTranspose2d(8, 16, 2, stride=2)\n",
    "        self.t_conv2 = nn.ConvTranspose2d(16, 2, 2, stride=2)\n",
    "\n",
    "\n",
    "    def forward(self, x):\n",
    "        ## encode ##\n",
    "        # add hidden layers with relu activation function\n",
    "        # and maxpooling after\n",
    "        x = F.relu(self.conv1(x))\n",
    "        x = self.pool(x)\n",
    "        # add second hidden layer\n",
    "        x = F.relu(self.conv2(x))\n",
    "        x = self.pool(x)  # compressed representation\n",
    "        \n",
    "        ## decode ##\n",
    "        # add transpose conv layers, with relu activation function\n",
    "        x = F.relu(self.t_conv1(x))\n",
    "        # output layer (with sigmoid for scaling from 0 to 1)\n",
    "        x = F.sigmoid(self.t_conv2(x))\n",
    "                \n",
    "        return x\n",
    "\n",
    "# initialize the NN\n",
    "model = ConvAutoencoder()\n",
    "print(model)\n",
    "summary(model,input_size=(2,30,30))\n",
    "model = model.to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "32898b91-a8f1-47f0-9a75-ea7917f05f72",
   "metadata": {},
   "outputs": [],
   "source": [
    "# specify loss function\n",
    "criterion = nn.MSELoss()\n",
    "#criterion = nn.L1Loss()\n",
    "#criterion = nn.CrossEntropyLoss()\n",
    "#criterion = nn.KLDivLoss()\n",
    "#criterion = nn.BCELoss()\n",
    "#criterion = nn.BCEWithLogitsLoss()\n",
    "\n",
    "# specify loss function\n",
    "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "24fa3733-aaed-49a8-883b-408aac441ebf",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 74.27it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 1 \tTraining Loss: 0.568792\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 203.56it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 2 \tTraining Loss: 0.524046\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 204.70it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 3 \tTraining Loss: 0.448499\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 209.98it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 4 \tTraining Loss: 0.334821\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 208.83it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 5 \tTraining Loss: 0.211844\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 206.77it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 6 \tTraining Loss: 0.142588\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 213.06it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 7 \tTraining Loss: 0.121466\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 206.44it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 8 \tTraining Loss: 0.114849\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 207.66it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 9 \tTraining Loss: 0.111831\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 21/21 [00:00<00:00, 210.06it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 10 \tTraining Loss: 0.109630\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "import random\n",
    "#random.Random(42).shuffle(train_input_output)\n",
    "\n",
    "# number of epochs to train the model\n",
    "n_epochs = 10\n",
    "\n",
    "for epoch in range(1, n_epochs+1):\n",
    "    # monitor training loss\n",
    "    train_loss = 0.0\n",
    "\n",
    "    #random.Random(epoch).shuffle(train_input_output)\n",
    "    \n",
    "    ###################\n",
    "    # train the model #\n",
    "    ###################\n",
    "    for input_output_offset in tqdm(train_input_output):\n",
    "        input, expected_output, _ = input_output_offset\n",
    "        \n",
    "        # clear the gradients of all optimized variables\n",
    "        optimizer.zero_grad()\n",
    "        # forward pass: compute predicted outputs by passing inputs to the model\n",
    "\n",
    "        outputs = model(input)\n",
    "        # calculate the loss\n",
    "        loss = criterion(outputs, expected_output)\n",
    "        # backward pass: compute gradient of the loss with respect to model parameters\n",
    "        loss.backward()\n",
    "        # perform a single optimization step (parameter update)\n",
    "        optimizer.step()\n",
    "        # update running training loss\n",
    "        train_loss += loss.item()*input.size(0)\n",
    "            \n",
    "    # print avg training statistics \n",
    "    train_loss = train_loss/len(train_input_output)\n",
    "    print('Epoch: {} \\tTraining Loss: {:.6f}'.format(\n",
    "        epoch, \n",
    "        train_loss\n",
    "        ))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "2ed1d86b-8cce-4ce6-be89-7a2e7a325d23",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAHqCAYAAACna18/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDwklEQVR4nO3de1xVZd7///cWOYlAoiCQgKaJqemYmWl9PSQh5HgoyzJLTaupAfNwj5Vzj6m3ldpp7OBodntK08yZSDvpeEJz0hTM1BnPVp5PqaCgaHD9/ujHvt2ygQ2uFRt6PR+P9Xi4174+67q2LPaHa50+DmOMEQAAsFS1ih4AAABVEQkWAAAbkGABALABCRYAABuQYAEAsAEJFgAAG5BgAQCwAQkWAAAbkGABALABCRaoQtLT0+VwOJSenu5cN3DgQNWvX7/CxnQ1d2MEqiISLAC3Xn75ZX3yyScVPQyg0iLBAlXce++9p127dpU5jgQLXJvqFT0AAFJBQYEuXbqkgIAAy7ft6+tr+TYBlI4ZLGChsWPHyuFwaOfOnerTp49CQkJUu3ZtDR06VBcvXnS2czgcSk1N1QcffKBmzZrJ399fS5culSQdPnxYgwYNUt26deXv769mzZpp5syZRfo6dOiQevXqpaCgIEVERGj48OHKy8sr0s7dOdiCggK9+eabuvnmmxUQEKDw8HAlJSUpIyPDOb6cnBzNmTNHDodDDodDAwcOdMZbPUagKmIGC9igT58+ql+/viZMmKANGzborbfe0pkzZ/T+++8726xatUofffSRUlNTVadOHdWvX1/Hjx/X7bff7kzA4eHh+vLLLzV48GBlZ2dr2LBhkqQLFy6oS5cuOnDggJ555hlFR0dr7ty5WrVqlUfjGzx4sGbPnq3k5GQ9/vjj+vnnn/XVV19pw4YNuvXWWzV37lw9/vjjuu222/Tkk09Kkho2bChJv9oYgUrPALDMmDFjjCTTo0cPl/V//OMfjSTz3XffGWOMkWSqVatm/v3vf7u0Gzx4sImKijKnTp1yWf/QQw+Z0NBQk5uba4wxZvLkyUaS+eijj5xtcnJyTKNGjYwks3r1auf6AQMGmLi4OOfrVatWGUnmmWeeKTL+goIC57+DgoLMgAEDirSxY4xAVcQhYsAGKSkpLq+HDBkiSfriiy+c6zp27KimTZs6Xxtj9I9//EPdu3eXMUanTp1yLl27dlVWVpY2b97s3E5UVJTuv/9+Z3yNGjWcs82S/OMf/5DD4dCYMWOKvOdwOEqM/bXGCFQFHCIGbHDjjTe6vG7YsKGqVaumH374wbmuQYMGLm1Onjyps2fPavr06Zo+fbrb7Z44cUKS9OOPP6pRo0ZFEmJ8fHypY9u3b5+io6MVFhbmyUepkDECVQEJFvgVuJsZBgYGurwuKCiQJD3yyCMaMGCA2+20aNHC+sGVQWUYI+AtSLCADfbs2eMyQ927d68KCgpKfKJSeHi4goODlZ+fr4SEhBK3HxcXp+3bt8sY45K8PbnftWHDhlq2bJlOnz5d4izW3R8Fv9YYgaqAc7CADaZMmeLy+u2335YkJScnFxvj4+Oj3r176x//+Ie2b99e5P2TJ086/33PPffoyJEj+vvf/+5cl5ubW+xh2yv17t1bxhiNGzeuyHvGGOe/g4KCdPbs2QoZI1AVMIMFbPD999+rR48eSkpK0vr16zVv3jw9/PDDatmyZYlxEydO1OrVq9W2bVs98cQTatq0qU6fPq3NmzdrxYoVOn36tCTpiSee0DvvvKP+/fsrMzNTUVFRmjt3rmrUqFHq2Dp37qxHH31Ub731lvbs2aOkpCQVFBToq6++UufOnZWamipJat26tVasWKE33nhD0dHRatCggdq2bfurjBGoEiruAmag6im8Tec///mPuf/++01wcLCpVauWSU1NNRcuXHC2k2RSUlLcbuP48eMmJSXFxMTEGF9fXxMZGWm6dOlipk+f7tLuxx9/ND169DA1atQwderUMUOHDjVLly4t9TYdY4z5+eefzauvvmqaNGli/Pz8THh4uElOTjaZmZnONjt37jQdOnQwgYGBRpLLLTtWjxGoihzGXHFMCMA1GTt2rMaNG6eTJ0+qTp06FT0cABWIc7AAANiABAsAgA1IsAAA2IBzsAAA2IAZLAAANiDBAgBgA6970ERBQYGOHDmi4ODgUit7AADwazHG6Ny5c4qOjla1aqXPT70uwR45ckQxMTEVPQwAANw6ePCg6tWrV2o7r0uwwcHB17aBIZnlj327dcX0W5F9V1C/WS82Kn+/AFABsrOzFRMT43Ge8roEe82Hhf1rWjOQytJvRfZ9Df2GhIRYOBAA+PV4mqdsu8hpypQpql+/vgICAtS2bVtt3LjRrq4AAPA6tiTYhQsXasSIERozZow2b96sli1bqmvXrjpx4oQd3QEA4HVsSbBvvPGGnnjiCT322GNq2rSppk2bpho1amjmzJl2dAcAgNexPMFeunRJmZmZSkhI+L9OqlVTQkKC1q9fb3V3AAB4Jcsvcjp16pTy8/NVt25dl/V169bVzp07i7TPy8tTXl6e83V2drbVQwIA4FdX4U9ymjBhgkJDQ50L98ACAKoCyxNsnTp15OPjo+PHj7usP378uCIjI4u0HzVqlLKyspzLwYMHrR4SAAC/OssTrJ+fn1q3bq2VK1c61xUUFGjlypVq165dkfb+/v4KCQlxWQAAqOxsedDEiBEjNGDAAN1666267bbbNHnyZOXk5Oixxx6zozsAALyOLQn2wQcf1MmTJ/XCCy/o2LFj+t3vfqelS5cWufAJAICqyrZHJaampio1NdWuzQMA4NUq/CpiAACqIocxxlT0IK6UnZ2t0NDQXyq1VOQD9GEr82rjih4CAJRJYX7Kysry6IJcZrAAANiABAsAgA1IsAAA2MDyBLt27Vp1795d0dHRcjgc+uSTT6zuAgAAr2d5gs3JyVHLli01ZcoUqzcNAEClYfl9sMnJyUpOTrZ6swAAVCq2PWjCU5SrAwBURRV+kRPl6gAAVVGFJ1jK1QEAqqIKP0Ts7+8vf3//ih4GAACWqvAZLAAAVZHlM9jz589r7969ztfff/+9tmzZorCwMMXGxlrdHQAAXsnyBJuRkaHOnTs7X48YMUKSNGDAAM2ePdvq7gAA8EqWJ9hOnTrJywr0AADwq6vwi5yK9XbrcoVdS3J3jNxd7thr9lp8uUMr7WcGgCqMi5wAALABCRYAABuQYAEAsIHlCXbChAlq06aNgoODFRERoV69emnXrl1WdwMAgFezPMGuWbNGKSkp2rBhg5YvX67Lly8rMTFROTk5VncFAIDXsvwq4qVLl7q8nj17tiIiIpSZmakOHTpY3R0AAF7J9tt0srKyJElhYWFu36dcHQCgKrL1IqeCggINGzZMd9xxh5o3b+62DeXqAABVka0JNiUlRdu3b9eHH35YbBvK1QEAqiLbDhGnpqbqs88+09q1a1WvXr1i21GuDgBQFVmeYI0xGjJkiNLS0pSenq4GDRpY3QUAAF7P8gSbkpKi+fPna/HixQoODtaxY8ckSaGhoQoMDLS6OwAAvJLl52CnTp2qrKwsderUSVFRUc5l4cKFVncFAIDXsuUQMQAAv3UO42UZMTs7W6GhodKQTMm/ZkUPBzYxrzau6CEAQJkU5qesrCyFhISU2p6H/QMAYAMSLAAANiDBAgBgA1uuIm7RooVCQkIUEhKidu3a6csvv7S6GwAAvJrlCbZevXqaOHGiMjMzlZGRobvuuks9e/bUv//9b6u7AgDAa1l+m0737t1dXr/00kuaOnWqNmzYoGbNmlndHQAAXsnWcnX5+flatGiRcnJy1K5dO7dtKFcHAKiKbLnIadu2bapZs6b8/f311FNPKS0tTU2bNnXblnJ1AICqyJYHTVy6dEkHDhxQVlaW/v73v+t///d/tWbNGrdJ1t0MNiYmhgdNVHE8aAJAZVPWB03YcojYz89PjRo1kiS1bt1amzZt0ptvvql33323SFvK1QEAqqJf5T7YgoICl1kqAABVneUz2FGjRik5OVmxsbE6d+6c5s+fr/T0dC1btszqrgAA8FqWJ9gTJ06of//+Onr0qEJDQ9WiRQstW7ZMd999t9VdAQDgtSxPsDNmzLB6kwAAVDo8ixgAABvY+qCJa/J26/LF/WlX+ft8Lb78sdfSb0X2XZGfGQCqMGawAADYgAQLAIANbE+wEydOlMPh0LBhw+zuCgAAr2Frgt20aZPeffddtWjRws5uAADwOrYl2PPnz6tfv3567733VKtWLbu6AQDAK9mWYFNSUtStWzclJCSU2C4vL0/Z2dkuCwAAlZ0tt+l8+OGH2rx5szZt2lRq2wkTJmjcuHF2DAMAgApj+Qz24MGDGjp0qD744AMFBASU2n7UqFHKyspyLgcPHrR6SAAA/Oosn8FmZmbqxIkTuuWWW5zr8vPztXbtWr3zzjvKy8uTj4+P8z3K1QEAqiLLE2yXLl20bds2l3WPPfaYmjRpoueee84luQIAUFVZnmCDg4PVvHlzl3VBQUGqXbt2kfUAAFRVPMkJAAAb/CoP+09PT/81ugEAwGswgwUAwAYOY4yp6EFcKTs7W6GhodKQTMm/ZkUPBzYxrzau6CEAQJkU5qesrCyFhISU2p4ZLAAANiDBAgBgA8sT7NixY+VwOFyWJk2aWN0NAABezZariJs1a6YVK1b8XyfVf5WLlQEA8Bq2ZL7q1asrMjLSjk0DAFAp2HIOds+ePYqOjtYNN9ygfv366cCBA3Z0AwCA17J8Btu2bVvNnj1b8fHxOnr0qMaNG6f/9//+n7Zv367g4OAi7fPy8pSXl+d8TT1YAEBVYHmCTU5Odv67RYsWatu2reLi4vTRRx9p8ODBRdpTDxYAUBXZfpvOddddp8aNG2vv3r1u36ceLACgKrI9wZ4/f1779u1TVFSU2/f9/f0VEhLisgAAUNlZnmD/9Kc/ac2aNfrhhx/09ddf695775WPj4/69u1rdVcAAHgty8/BHjp0SH379tVPP/2k8PBw3XnnndqwYYPCw8Ot7goAAK9leYL98MMPrd4kAACVDs8iBgDABt77DMO3W5cr7Fqq7zlG7i537DV7Lb7coZX2MwNAFcYMFgAAG5BgAQCwgS0J9vDhw3rkkUdUu3ZtBQYG6uabb1ZGRoYdXQEA4JUsPwd75swZ3XHHHercubO+/PJLhYeHa8+ePapVq5bVXQEA4LUsT7CTJk1STEyMZs2a5VzXoEEDq7sBAMCrWX6IeMmSJbr11lv1wAMPKCIiQq1atdJ7771ndTcAAHg1yxPs/v37NXXqVN14441atmyZnn76aT3zzDOaM2eO2/Z5eXnKzs52WQAAqOwsP0RcUFCgW2+9VS+//LIkqVWrVtq+fbumTZumAQMGFGlPuToAQFVk+Qw2KipKTZs2dVl300036cCBA27bU64OAFAVWT6DveOOO7Rr1y6Xdbt371ZcXJzb9v7+/vL397d6GAAAVCjLZ7DDhw/Xhg0b9PLLL2vv3r2aP3++pk+frpSUFKu7AgDAa1meYNu0aaO0tDQtWLBAzZs31/jx4zV58mT169fP6q4AAPBatjzs//e//71+//vf27FpAAAqBZ5FDACADRzmWmqd2SA7O1uhoaHSkEzJv2ZFDwc2Ma82rughAECZFOanrKwshYSElNqeGSwAADYgwQIAYAPLE2z9+vXlcDiKLNymAwD4LbH8KuJNmzYpPz/f+Xr79u26++679cADD1jdFQAAXsvyBBseHu7yeuLEiWrYsKE6duxodVcAAHgtW8/BXrp0SfPmzdOgQYPkcDjs7AoAAK9iy4MmCn3yySc6e/asBg4cWGybvLw85eXlOV9Trg4AUBXYOoOdMWOGkpOTFR0dXWybCRMmKDQ01LnExMTYOSQAAH4VtiXYH3/8UStWrNDjjz9eYjvK1QEAqiLbDhHPmjVLERER6tatW4ntKFcHAKiKbJnBFhQUaNasWRowYICqV7f1NC8AAF7JlgS7YsUKHThwQIMGDbJj8wAAeD1bppeJiYnyshoCAAD8qngWMQAANvDaE6RZLzbyqBwQAADeiBksAAA2IMECAGADEiwAADawPMHm5+dr9OjRatCggQIDA9WwYUONHz+eq4oBAL8pll/kNGnSJE2dOlVz5sxRs2bNlJGRoccee0yhoaF65plnrO4OAACvZHmC/frrr9WzZ0/nIxLr16+vBQsWaOPGjVZ3BQCA17L8EHH79u21cuVK7d69W5L03Xffad26dUpOTnbbPi8vT9nZ2S4LAACVneUz2Oeff17Z2dlq0qSJfHx8lJ+fr5deekn9+vVz237ChAkaN26c1cMAAKBCWT6D/eijj/TBBx9o/vz52rx5s+bMmaPXXntNc+bMcduecnUAgKrIYSy+vDcmJkbPP/+8UlJSnOtefPFFzZs3Tzt37iw1Pjs7W6GhocrKyuJJTgAAr1HW/GT5DDY3N1fVqrlu1sfHRwUFBVZ3BQCA17L8HGz37t310ksvKTY2Vs2aNdO3336rN954g9J1AIDfFMsPEZ87d06jR49WWlqaTpw4oejoaPXt21cvvPCC/Pz8So3nEDEAwBuVNT9ZnmCvFQkWAOCNKvwcLAAAIMECAGALEiwAADYgwQIAYANbEuy5c+c0bNgwxcXFKTAwUO3bt9emTZvs6AoAAK9kS4J9/PHHtXz5cs2dO1fbtm1TYmKiEhISdPjwYTu6AwDA61h+m86FCxcUHBysxYsXO0vWSVLr1q2VnJysF198scR4btMBAHijsuYny5/k9PPPPys/P18BAQEu6wMDA7Vu3boi7fPy8pSXl+d8Tbk6AEBVYPkh4uDgYLVr107jx4/XkSNHlJ+fr3nz5mn9+vU6evRokfYTJkxQaGioc4mJibF6SAAA/OpseZLTvn37NGjQIK1du1Y+Pj665ZZb1LhxY2VmZmrHjh0ubd3NYGNiYjhEDADwKhV+iFiSGjZsqDVr1ignJ0fZ2dmKiorSgw8+qBtuuKFIW39/f/n7+9sxDAAAKoyt98EGBQUpKipKZ86c0bJly9SzZ087uwMAwGvYMoNdtmyZjDGKj4/X3r17NXLkSDVp0kSPPfaYHd0BAOB1bJnBZmVlKSUlRU2aNFH//v115513atmyZfL19bWjOwAAvA7l6gAA8ADl6gAA8AIkWAAAbECCBQDABiRYAABsUOYEu3btWnXv3l3R0dFyOBz65JNPXN43xuiFF15QVFSUAgMDlZCQoD179lg1XgAAKoUyJ9icnBy1bNlSU6ZMcfv+K6+8orfeekvTpk3TN998o6CgIHXt2lUXL1685sECAFBZlPlBE8nJyUpOTnb7njFGkydP1l/+8hfnU5vef/991a1bV5988okeeuihaxstAACVhKXnYL///nsdO3ZMCQkJznWhoaFq27at1q9f7zYmLy9P2dnZLgsAAJWdpQn22LFjkqS6deu6rK9bt67zvatRrg4AUBVV+FXEo0aNUlZWlnM5ePBgRQ8JAIBrZmmCjYyMlCQdP37cZf3x48ed713N399fISEhLgsAAJWdpQm2QYMGioyM1MqVK53rsrOz9c0336hdu3ZWdgUAgFcr81XE58+f1969e52vv//+e23ZskVhYWGKjY3VsGHD9OKLL+rGG29UgwYNNHr0aEVHR6tXr15WjhsAAK9W5gSbkZGhzp07O1+PGDFCkjRgwADNnj1bzz77rHJycvTkk0/q7NmzuvPOO7V06VIFBARYN2oAALwc5eoAAPAA5eoAAPACJFgAAGxAggUAwAYkWAAAbGB5ubqPP/5YiYmJql27thwOh7Zs2WLRUAEAqDwsL1eXk5OjO++8U5MmTbrmwQEAUFlZWq5Okh599FFJ0g8//FDuQQEAUNmVOcFaLS8vT3l5ec7XlKsDAFQFFX6RE+XqAABVUYUnWMrVAQCqogo/ROzv7y9/f/+KHgYAAJaq8BksAABVkeXl6k6fPq0DBw7oyJEjkqRdu3ZJ+qUYe3FF1wEAqGrKPIPNyMhQq1at1KpVK0m/lKtr1aqVXnjhBUnSkiVL1KpVK3Xr1k2S9NBDD6lVq1aaNm2ahcMGAMC7Ua4OAAAPUK4OAAAvQIIFAMAGJFgAAGxAggUAwAaWlqu7fPmynnvuOd18880KCgpSdHS0+vfv77xlBwCA3wpLy9Xl5uZq8+bNGj16tDZv3qyPP/5Yu3btUo8ePSwZLAAAlcU13abjcDiUlpamXr16Fdtm06ZNuu222/Tjjz8qNja21G1ymw4AwBt53W06WVlZcjgcuu666+zuCgAAr2Hrw/4vXryo5557Tn379i0221MPFgBQFdk2g718+bL69OkjY4ymTp1abDvqwQIAqiJbEmxhcv3xxx+1fPnyEo9VUw8WAFAVWX6IuDC57tmzR6tXr1bt2rVLbE89WABAVWRpubqoqCjdf//92rx5sz777DPl5+fr2LFjkqSwsDD5+flZN3IAALxYmW/TSU9PV+fOnYusHzBggMaOHasGDRq4jVu9erU6depU6va5TQcA4I3Kmp/KPIPt1KmTSsrJXlb9DgCACsGziAEAsAEJFgAAG5BgAQCwAQkWAAAbWFquTpLGjh2rJk2aKCgoSLVq1VJCQoK++eYbq8YLAEClYGm5Oklq3Lix3nnnHW3btk3r1q1T/fr1lZiYqJMnT17zYAEAqCxsL1dXeN/QihUr1KVLl1K3yX2wAABv5FXl6i5duqTp06crNDRULVu2tLMrAAC8ii3l6j777DM99NBDys3NVVRUlJYvX646deq4bUu5OgBAVWTLDLZz587asmWLvv76ayUlJalPnz46ceKE27aUqwMAVEW2JNigoCA1atRIt99+u2bMmKHq1atrxowZbttSrg4AUBXZcoj4agUFBS6Hga9EuToAQFVkabm62rVr66WXXlKPHj0UFRWlU6dOacqUKTp8+LAeeOABSwcOAIA3K3OCzcjIcClXN2LECEm/lKubNm2adu7cqTlz5ujUqVOqXbu22rRpo6+++krNmjWzbtQAAHi5a7oP1g7cBwsA8EZedR8sAAC/VSRYAABsQIIFAMAGJFgAAGxgebm6Kz311FNyOByaPHnyNQwRAIDKx/JydYXS0tK0YcMGRUdHl3twAABUVmW+DzY5OVnJyckltjl8+LCGDBmiZcuWqVu3buUeHAAAlZXl52ALCgr06KOPauTIkTxcAgDwm2X5s4gnTZqk6tWr65lnnvGoPeXqAABVkaUz2MzMTL355puaPXu2HA6HRzGUqwMAVEWWJtivvvpKJ06cUGxsrKpXr67q1avrxx9/1H/913+pfv36bmMoVwcAqIosPUT86KOPKiEhwWVd165d9eijj+qxxx5zG0O5OgBAVWRpubrY2FjVrl3bpb2vr68iIyMVHx9/7aMFAKCSsLRc3ezZsy0bGAAAlVmZE2ynTp1Ulgp3P/zwQ1m7AACg0uNZxAAA2IAECwCADUiwAADYgAQLAIANSLAAANjA8nqwAwcOlMPhcFmSkpKsGi8AAJWCLfVgk5KSdPToUeeyYMGCaxokAACVjS31YP39/RUZGVnuQQEAUNnZcg42PT1dERERio+P19NPP62ffvqp2LZ5eXnKzs52WQAAqOwsT7BJSUl6//33tXLlSk2aNElr1qxRcnKy8vPz3banXB0AoCpymLI89/DqYIdDaWlp6tWrV7Ft9u/fr4YNG2rFihXq0qVLkffdFVyPiYlRVlaWQkJCyjs0AAAslZ2drdDQUI/zk+236dxwww2qU6eOSwWeK/n7+yskJMRlAQCgsrM9wR46dEg//fSToqKi7O4KAACvYWk92LCwMI0bN069e/dWZGSk9u3bp2effVaNGjVS165dLR04AADezNJ6sFOnTtXWrVs1Z84cnT17VtHR0UpMTNT48ePl7+9v3agBAPBy13SRkx3KehIZAIBfg9dd5AQAwG8RCRYAABuQYAEAsAEJFgAAG1herk6SduzYoR49eig0NFRBQUFq06aNDhw4YMV4AQCoFCwvV7dv3z7deeedatKkidLT07V161aNHj1aAQEB1zxYAAAqC8ufRfzQQw/J19dXc+fOLdc2uU0HAOCNKvQ2nYKCAn3++edq3LixunbtqoiICLVt29btYeRClKsDAFRFlibYEydO6Pz585o4caKSkpL0z3/+U/fee6/uu+8+rVmzxm0M5eoAAFWRpYeIjxw5ouuvv159+/bV/Pnzne169OihoKAgLViwoMg2KFcHAKgMynqIuMzPIi5JnTp1VL16dTVt2tRl/U033aR169a5jfH39+c5xQCAKsfSQ8R+fn5q06aNdu3a5bJ+9+7diouLs7IrAAC8mqXl6mJjYzVy5Eg9+OCD6tChgzp37qylS5fq008/VXp6upXjBgDAq5X5HGx6erpLubpCAwYM0OzZsyVJM2fO1IQJE3To0CHFx8dr3Lhx6tmzp0fb5zYdAIA3Kmt+olwdAAAeoFwdAABegAQLAIANSLAAANiABAsAgA0sL1fncDjcLq+++qpVYwYAwOtZXq7u6NGjLsvMmTPlcDjUu3fvax4sAACVRZkfNJGcnKzk5ORi34+MjHR5vXjxYnXu3Fk33HBD2UcHAEAlZemziK92/Phxff7555ozZ06xbdw97B8AgMrO1ouc5syZo+DgYN13333FtqFcHQCgKrI1wc6cOVP9+vVTQEBAsW1GjRqlrKws53Lw4EE7hwQAwK/CtkPEX331lXbt2qWFCxeW2I5ydQCAqsi2GeyMGTPUunVrtWzZ0q4uAADwWpaXq5N+uVBp0aJFev31160bKQAAlUiZE2xGRoZLuboRI0ZIci1X9+GHH8oYo759+1ozSgAAKhnK1QEA4AHK1QEA4AVIsAAA2IAECwCADUiwAADYwPJydefPn1dqaqrq1aunwMBANW3aVNOmTbNqvAAAVAqWl6sbMWKEli5dqnnz5mnHjh0aNmyYUlNTtWTJkmseLAAAlYXl5eq+/vprDRgwQJ06dZIkPfnkk3r33Xe1ceNG9ejRo9wDBQCgMrH8HGz79u21ZMkSHT58WMYYrV69Wrt371ZiYqLb9nl5ecrOznZZAACo7CxPsG+//baaNm2qevXqyc/PT0lJSZoyZYo6dOjgtj3l6gAAVZEtCXbDhg1asmSJMjMz9frrryslJUUrVqxw255ydQCAqsjScnUXLlzQn//8Z6Wlpalbt26SpBYtWmjLli167bXXlJCQUCSGcnUAgKrI0hns5cuXdfnyZVWr5rpZHx8fFRQUWNkVAABezfJydR07dtTIkSMVGBiouLg4rVmzRu+//77eeOMNSwcOAIA3K3M1nfT0dJdydYUKy9UdO3ZMo0aN0j//+U+dPn1acXFxevLJJzV8+HA5HI5St081HQCANyprfqJcHQAAHqBcHQAAXoAECwCADUiwAADYgAQLAIANLC9Xd/z4cQ0cOFDR0dGqUaOGkpKStGfPHqvGCwBApWBpuTpjjHr16qX9+/dr8eLF+vbbbxUXF6eEhATl5ORYMmAAACoDS8vV7dmzRxs2bND27dvVrFkzSdLUqVMVGRmpBQsW6PHHH7+20QIAUElYeg42Ly9PkhQQEPB/HVSrJn9/f61bt87KrgAA8GqWJtgmTZooNjZWo0aN0pkzZ3Tp0iVNmjRJhw4d0tGjR93GUA8WAFAVWZpgfX199fHHH2v37t0KCwtTjRo1tHr1aiUnJxcpAFCIerAAgKrI8tt0WrdurS1btujs2bM6evSoli5dqp9++kk33HCD2/bUgwUAVEWW1oO9UmhoqKRfLnzKyMjQ+PHj3bajHiwAoCqyvFzdokWLFB4ertjYWG3btk1Dhw5Vr169lJiYaOnAAQDwZmVOsBkZGS7l6kaMGCHp/8rVHT16VCNGjNDx48cVFRWl/v37a/To0daNGACASoBydQAAeIBydQAAeAESLAAANiDBAgBgAxIsAAA2KFOCnTBhgtq0aaPg4GBFRESoV69e2rVrl0ubixcvKiUlRbVr11bNmjXVu3dvHT9+3NJBAwDg7cqUYNesWaOUlBRt2LBBy5cv1+XLl5WYmOhSim748OH69NNPtWjRIq1Zs0ZHjhzRfffdZ/nAAQDwZtd0m87JkycVERGhNWvWqEOHDsrKylJ4eLjmz5+v+++/X5K0c+dO3XTTTVq/fr1uv/32UrfJbToAAG/0q96mk5WVJUkKCwuTJGVmZury5ctKSEhwtimssLN+/fpr6QoAgEql3M8iLigo0LBhw3THHXeoefPmkqRjx47Jz89P1113nUvbunXr6tixY263k5eX56wjK4lydQCAKqHcM9iUlBRt375dH3744TUNgHJ1AICqqFwJNjU1VZ999plWr16tevXqOddHRkbq0qVLOnv2rEv748ePKzIy0u22KFcHAKiKypRgjTFKTU1VWlqaVq1apQYNGri837p1a/n6+mrlypXOdbt27dKBAwfUrl07t9v09/dXSEiIywIAQGVXpnOwKSkpmj9/vhYvXqzg4GDnedXQ0FAFBgYqNDRUgwcP1ogRIxQWFqaQkBANGTJE7dq18+gKYgAAqooy3abjcDjcrp81a5YGDhwo6ZcHTfzXf/2XFixYoLy8PHXt2lV/+9vfij1EfDVu0wEAeKOy5ifK1QEA4AHK1QEA4AVIsAAA2IAECwCADUiwAADYwPJyddOnT1enTp0UEhIih8NR5KETAAD8Flheri43N1dJSUn685//bPlgAQCoLCwtV3el9PR0de7cWWfOnCny8P+ScJsOAMAbVWi5OgAA8AtLy9WVB+XqAABVEeXqAACwgaXl6sqDcnUAgKqoTIeIjTEaMmSI0tLSlJ6eXqRcXXn4+/vL39//mrcDAIA3sbRcnSQdO3ZMx44d0969eyVJ27ZtU3BwsGJjY7kYCgDwm2F5ubqxY8dq3LhxJbYpCbfpAAC8EeXqAACwAeXqAADwAiRYAABsQIIFAMAGJFgAAGxAggUAwAaW1oM9ffq0hgwZovj4eAUGBio2NlbPPPOMsygAAAC/FZbWgz1y5IiOHDmi1157Tdu3b9fs2bO1dOlSDR482JbBAwDgrWyrB1to0aJFeuSRR5STk6Pq1Ut/cBT3wQIAvFFZ81O5y9VJntWDLRxIccmVcnUAgKqo3Bc5eVIP9tSpUxo/fryefPLJYrdDuToAQFVU7kPETz/9tL788kutW7fObcm67Oxs3X333QoLC9OSJUvk6+vrdjvuZrAxMTEcIgYAeJVf5RBxYT3YtWvXuk2u586dU1JSkoKDg5WWllZscpUoVwcAqJrKdIjYGKPU1FSlpaVp1apVbuvBZmdnKzExUX5+flqyZIkCAgIsGywAAJWFpfVgC5Nrbm6u5s2bp+zsbOdFS+Hh4fLx8bH+EwAA4IUsrQebnp6uzp07u23z/fffq379+qX2wW06AABvZOs52NJycadOnUptAwDAbwHPIgYAwAYkWAAAbECCBQDABiRYAABsYGm5Okn6wx/+oIYNGyowMFDh4eHq2bOndu7caemgAQDwdpaWq5Ok1q1ba9asWdqxY4eWLVsmY4wSExOVn59v+eABAPBWtper27p1q1q2bKm9e/eqYcOGpW6T+2ABAN7Iq8rV5eTkaNasWWrQoEGxVXIoVwcAqIpsKVf3t7/9TTVr1lTNmjX15Zdfavny5fLz83O7HcrVAQCqIlvK1WVlZenEiRM6evSoXnvtNR0+fFj/+te/3D74n3J1AIDKwCvK1RXORm+88UbdfvvtqlWrltLS0tS3b98ibSlXBwCoisr8LOIhQ4YoLS1N6enpbsvVuYsxxrjMUgEAqOosLVe3f/9+LVy4UImJiQoPD9ehQ4c0ceJEBQYG6p577rHlAwAA4I3KdJHT1KlTlZWVpU6dOikqKsq5LFy4UJIUEBCgr776Svfcc48aNWqkBx98UMHBwfr6668VERFhywcAAMAbWVquLjo6Wl988cU1DQgAgKqAZxEDAGADEiwAADYgwQIAYAMSLAAANrC8XF0hY4ySk5PlcDj0ySefWDFWAAAqDcvL1RWaPHmyHA6HZQMFAKAyKdNtOkuXLnV5PXv2bEVERCgzM9OlXN2WLVv0+uuvKyMjQ1FRUdaMFACASsTycnW5ubl6+OGHNWXKFEVGRpa6DcrVAQCqIsvL1Q0fPlzt27dXz549PdoO5eoAAFVRuWewKSkp2r59u9atW+dct2TJEq1atUrffvutx9sZNWqURowY4XxdWK4OAIDKrFwz2MJydatXr3YpV7dq1Srt27dP1113napXr67q1X/J371791anTp3cbsvf318hISEuCwAAlV2ZCq5fXa7uxhtvdHn/2LFjOnXqlMu6m2++WW+++aa6d+/uUXm7sha0BQDg12BrwfXSytVFRka6vbApNjbWo+QKAEBVYWm5OgAA8AtLy9VZFQMAQGXHs4gBALABCRYAABuQYAEAsAEJFgAAG1herq5Tp05yOBwuy1NPPWXpoAEA8Ha2lKt74okndPToUefyyiuvWDpoAAC8nS3l6mrUqOFRJR0AAKqqazoH665cnSR98MEHqlOnjpo3b65Ro0YpNze32G3k5eUpOzvbZQEAoLIrdzWd4srVPfzww4qLi1N0dLS2bt2q5557Trt27dLHH3/sdjsTJkzQuHHjyjsMAAC8Upke9n+lp59+Wl9++aXWrVvnUlHnaqtWrVKXLl20d+9eNWzYsMj77gqux8TE8LB/AIBXsfVh/4UKy9WtXbu2xOQqSW3btpWkYhOsv7+//P39yzMMAAC8VpmfRXxluTpPKuRs2bJFkhQVFVWuAQIAUBlZWq5u3759mj9/vu655x7Vrl1bW7du1fDhw9WhQwe1aNHClg8AAIA3KtM5WIfD4Xb9rFmzNHDgQB08eFCPPPKItm/frpycHMXExOjee+/VX/7yF4/Pp1JwHQDgjWw9B1taLo6JidGaNWvKskkAAKoknkUMAIANSLAAANiABAsAgA1IsAAA2MDycnWStH79et11110KCgpSSEiIOnTooAsXLlg2aAAAvJ3l5erWr1+vpKQkJSYmauPGjdq0aZNSU1NVrRqTZQDAb0e5n0UsSSdPnlRERITWrFnjLFd3++236+6779b48ePLtU3ugwUAeKOy5idLy9WdOHFC33zzjSIiItS+fXvVrVtXHTt21Lp1666lGwAAKp1yJ1h35er2798vSRo7dqyeeOIJLV26VLfccou6dOmiPXv2uN0O9WABAFVRuRNsSkqKtm/frg8//NC5rqCgQJL0hz/8QY899phatWqlv/71r4qPj9fMmTPdbmfChAkKDQ11LjExMeUdEgAAXqNcCbawXN3q1atdytUVVsxp2rSpS/ubbrpJBw4ccLutUaNGKSsry7kcPHiwPEMCAMCrWFqurn79+oqOji5y687u3buVnJzsdpvUgwUAVEWWlqtzOBwaOXKkxowZo5YtW+p3v/ud5syZo507d+rvf/+7LR8AAABvVKYEO3XqVElSp06dXNYXlquTpGHDhunixYsaPny4Tp8+rZYtW2r58uVq2LChJQMGAKAyuKb7YO3AfbAAAG/0q94HCwAA3CPBAgBgAxIsAAA2IMECAGADS8vV/fDDD3I4HG6XRYsWWT54AAC8laXl6mJiYnT06FGXZdy4capZs2axD5oAAKAqsrxc3dVatWqlW265RTNmzPBom9ymAwDwRhVaru5qmZmZ2rJliwYPHnwt3QAAUOmU6UlOV3JXru5qM2bM0E033aT27dsXu528vDzl5eU5X1OuDgBQFVharu5KFy5c0Pz580udvVKuDgBQFVlaru5Kf//735Wbm6v+/fuXuC3K1QEAqiJLy9VdacaMGerRo4fCw8NL3Cbl6gAAVZGl5eoK7d27V2vXrtUXX3xh7WgBAKgkynSIeOrUqcrKylKnTp0UFRXlXBYuXOjSbubMmapXr54SExMtHSwAAJUF5eoAAPBAWfNTuW/TsUthvud2HQCANynMS57OS70uwZ47d06SuF0HAOCVzp07p9DQ0FLbed0h4oKCAh05ckTBwcFyOBxF3s/OzlZMTIwOHjxY5kPIlTG2Ivsmtmwq47h/a7EV2TexZeON4zbG6Ny5c4qOjla1aqVfwuR1M9hq1aoVe2/tlUJCQsp9jrYyxlZk38RWjr6JrRx9E1s5+i4u1pOZayHqwQIAYAMSLAAANqh0Cdbf319jxowp19OfKmNsRfZNbOXom9jK0TexlaPvax33lbzuIicAAKqCSjeDBQCgMiDBAgBgAxIsAAA2IMECAGCDSpdgp0yZovr16ysgIEBt27bVxo0bS41Zu3atunfvrujoaDkcDn3yySce9zdhwgS1adNGwcHBioiIUK9evbRr1y6PYqdOnaoWLVo4b1hu166dvvzyS4/7vtLEiRPlcDg0bNiwUtuOHTtWDofDZWnSpInHfR0+fFiPPPKIateurcDAQN18883KyMjwKLZ+/fpF+nY4HEpJSSk1Nj8/X6NHj1aDBg0UGBiohg0bavz48R4/9/PcuXMaNmyY4uLiFBgYqPbt22vTpk1F2pW2Pxhj9MILLygqKkqBgYFKSEjQnj17PIr9+OOPlZiYqNq1a8vhcGjLli0e9Xv58mU999xzuvnmmxUUFKTo6Gj1799fR44c8XjcY8eOVZMmTRQUFKRatWopISFB33zzjUexV3rqqafkcDg0efJkj2IHDhxY5OedlJTkcb87duxQjx49FBoaqqCgILVp00YHDhwoNdbdfuZwOPTqq6+WGnv+/HmlpqaqXr16CgwMVNOmTTVt2jSPxnz8+HENHDhQ0dHRqlGjhpKSkpz7hyffFxcvXlRKSopq166tmjVrqnfv3jp+/LhHsdOnT1enTp0UEhIih8Ohs2fPetTv6dOnNWTIEMXHxyswMFCxsbF65plnlJWV5fG4//CHP6hhw4YKDAxUeHi4evbsqZ07d5bpO9IYo+TkZOf/qyexnTp1KvIzfuqppzzud/369brrrrsUFBSkkJAQdejQQf/zP/9TYuwPP/xQ7P61aNEit5/NnUqVYBcuXKgRI0ZozJgx2rx5s1q2bKmuXbvqxIkTJcbl5OSoZcuWmjJlSpn7XLNmjVJSUrRhwwYtX75cly9fVmJionJyckqNrVevniZOnKjMzExlZGTorrvuUs+ePfXvf/+7TGPYtGmT3n33XbVo0cLjmGbNmuno0aPOZd26dR7FnTlzRnfccYd8fX315Zdf6j//+Y9ef/111apVy+OxXtnv8uXLJUkPPPBAqbGTJk3S1KlT9c4772jHjh2aNGmSXnnlFb399tse9f34449r+fLlmjt3rrZt26bExEQlJCTo8OHDLu1K2x9eeeUVvfXWW5o2bZq++eYbBQUFqWvXrrp48WKpsTk5Obrzzjs1adIkt+8VF5ubm6vNmzdr9OjR2rx5sz7++GPt2rVLPXr08HjcjRs31jvvvKNt27Zp3bp1ql+/vhITE3Xy5EmPfwfS0tK0YcMGRUdHe9yvJCUlJbn83BcsWOBR7L59+3TnnXeqSZMmSk9P19atWzV69GgFBASUGntlf0ePHtXMmTPlcDjUu3fvUmNHjBihpUuXat68edqxY4eGDRum1NRULVmypMRYY4x69eql/fv3a/Hixfr2228VFxenhIQE5eTkePR9MXz4cH366adatGiR1qxZoyNHjui+++7zKDY3N1dJSUn685//7DKu0mKPHDmiI0eO6LXXXtP27ds1e/ZsLV26VIMHD/YoXpJat26tWbNmaceOHVq2bJmMMUpMTFR6errH35GTJ092eQSup9+vTzzxhMvP+pVXXvEodv369UpKSlJiYqI2btyoTZs2KTU1VevWrSsxNiYmpsj+NW7cONWsWVPJyclu9ym3TCVy2223mZSUFOfr/Px8Ex0dbSZMmODxNiSZtLS0co/hxIkTRpJZs2ZNueJr1apl/vd//9fj9ufOnTM33nijWb58uenYsaMZOnRoqTFjxowxLVu2LNf4nnvuOXPnnXeWK9adoUOHmoYNG5qCgoJS23br1s0MGjTIZd19991n+vXrV2psbm6u8fHxMZ999pnL+ltuucX893//d7FxV+8PBQUFJjIy0rz66qvOdWfPnjX+/v5mwYIFJcZe6fvvvzeSzLfffutRv+5s3LjRSDI//vhjueKzsrKMJLNixQqPYg8dOmSuv/56s337dhMXF2f++te/etTvgAEDTM+ePUscS3GxDz74oHnkkUfKFXu1nj17mrvuusuj2GbNmpn/+Z//cVnnbl+5OnbXrl1Gktm+fbtzXX5+vgkPDzfvvfdekb6v/r44e/as8fX1NYsWLXK22bFjh5Fk1q9fX2LslVavXm0kmTNnzhR5r7TYQh999JHx8/Mzly9fLlf8d999ZySZvXv3ehT77bffmuuvv94cPXq02J+nu1hPv/fcxbZt29b85S9/KVfs1X73u98V+X4qTaWZwV66dEmZmZlKSEhwrqtWrZoSEhK0fv36X20chYdUwsLCyhSXn5+vDz/8UDk5OWrXrp3HcSkpKerWrZvL5/bEnj17FB0drRtuuEH9+vXTgQMHPIpbsmSJbr31Vj3wwAOKiIhQq1at9N5775Wp70KXLl3SvHnzNGjQILeFG67Wvn17rVy5Urt375Ykfffdd1q3bp1HfzH+/PPPys/PV0BAgMv6wMBAj2fvkvT999/r2LFjLv/foaGhatu27a+6n0m/7GsOh0PXXXddmWMvXbqk6dOnKzQ0VC1btiy1fUFBgR599FGNHDlSzZo1K3N/6enpioiIUHx8vJ5++mn99NNPHvX5+eefq3HjxuratasiIiLUtm3bMp3CKXT8+HF9/vnnzhlZadq3b68lS5bo8OHDMsZo9erV2r17txITE0uMy8vLkySX/axatWry9/d3u59d/X2RmZmpy5cvu+xfTZo0UWxsbJH9q7zfNZ7GFtY0rV696CPpS4vPycnRrFmz1KBBgyKVz9zF5ubm6uGHH9aUKVMUGRlZ5nF/8MEHqlOnjpo3b65Ro0YpNze31NgTJ07om2++UUREhNq3b6+6deuqY8eOHv2crpaZmaktW7Z4vH85lSkdV6DDhw8bSebrr792WT9y5Ehz2223ebwdXcMMNj8/33Tr1s3ccccdHsds3brVBAUFGR8fHxMaGmo+//xzj2MXLFhgmjdvbi5cuGCM8fwvuS+++MJ89NFH5rvvvjNLly417dq1M7GxsSY7O7vUWH9/f+Pv729GjRplNm/ebN59910TEBBgZs+e7fG4Cy1cuND4+PiYw4cPe9Q+Pz/fPPfcc8bhcJjq1asbh8NhXn75ZY/7a9eunenYsaM5fPiw+fnnn83cuXNNtWrVTOPGjYuNuXp/+Ne//mUkmSNHjri0e+CBB0yfPn1KjL3Stc5gL1y4YG655Rbz8MMPlyn+008/NUFBQcbhcJjo6GizceNGj2Jffvllc/fddzuPNJRlBrtgwQKzePFis3XrVpOWlmZuuukm06ZNG/Pzzz+XGFs4k6lRo4Z54403zLfffmsmTJhgHA6HSU9P9+jzFpo0aZKpVauW83eltNiLFy+a/v37G0mmevXqxs/Pz8yZM6fU2EuXLpnY2FjzwAMPmNOnT5u8vDwzceJEI8kkJia6xLr7vvjggw+Mn59fkX7atGljnn322RJjr1TSDNaT76mTJ0+a2NhY8+c//7lM8VOmTDFBQUFGkomPjy8yey0u9sknnzSDBw92vnb3Myku9t133zVLly41W7duNfPmzTPXX3+9uffee0uNXb9+vZFkwsLCzMyZM83mzZvNsGHDjJ+fn9m9e7dHn7fQ008/bW666aZi3y8OCbYMnnrqKRMXF2cOHjzocUxeXp7Zs2ePycjIMM8//7ypU6eO+fe//11q3IEDB0xERIT57rvvnOs8TbBXO3PmjAkJCfHo0LSvr69p166dy7ohQ4aY22+/vcz9JiYmmt///vcet1+wYIGpV6+eWbBggdm6dat5//33TVhYmMfJfe/evaZDhw5GkvHx8TFt2rQx/fr1M02aNCk2xhsT7KVLl0z37t1Nq1atTFZWVpniz58/b/bs2WPWr19vBg0aZOrXr2+OHz9eYmxGRoapW7euyx9CZUmwV9u3b59Hh6YLf6f79u3r0q579+7moYceKlO/8fHxJjU11e177mJfffVV07hxY7NkyRLz3XffmbffftvUrFnTLF++vNTYjIwM07JlS+d+1rVrV5OcnGySkpJc2rn7vvA0wZb2XVNSgi0tNisry9x2220mKSnJXLp0qUzxZ8+eNbt37zZr1qwx3bt3N7fccovLHzXuYhcvXmwaNWpkzp0751zn7v/V0+/XlStXFjk07S628Hd51KhRLvE333yzef755z3uNzc314SGhprXXnutxHG5U2kSbF5envHx8SnyQ+nfv7/p0aOHx9spb4JNSUkx9erVM/v37y9z7JW6dOlinnzyyVLbpaWlOX+BCxdJxuFwGB8fnyKzg9LceuutLjtVcWJjY13+0jTGmL/97W8mOjq6TP398MMPplq1auaTTz7xOKZevXrmnXfecVk3fvx4Ex8fX6a+z58/70yQffr0Mffcc0+xba/eHwqTw9WJsUOHDuaZZ54pMfZK5U2wly5dMr169TItWrQwp06d8njcxWnUqFGRowBXx/71r3917ldX7mvVqlUzcXFx5eq3Tp06Ztq0aSXG5uXlmerVq5vx48e7tHv22WdN+/btPe537dq1RpLZsmWL2/evjs3NzTW+vr5FztcPHjzYdO3a1eN+z549a06cOGGM+eX6kD/+8Y/O94r7vihMDlcnxtjYWPPGG2+UGHul4hJsabHZ2dmmXbt2pkuXLm5n+2X5nsvLyzM1atQw8+fPLzF26NChxe5fHTt2LHO/58+fN5LM0qVLS4zdv3+/kWTmzp3rsr5Pnz7OI0Oe9Pv+++8bX19f58+6LCrNOVg/Pz+1bt1aK1eudK4rKCjQypUry3ROs6yMMUpNTVVaWppWrVqlBg0aXNP2CgoKnOdxStKlSxdt27ZNW7ZscS633nqr+vXrpy1btsjHx8fjPs+fP699+/YpKiqq1LZ33HFHkUvdd+/erbi4OI/7k6RZs2YpIiJC3bp18zgmNze3SBFjHx8fFRQUlKnvoKAgRUVF6cyZM1q2bJl69uzpcWyDBg0UGRnpsp9lZ2frm2++sXU/k365VadPnz7as2ePVqxYodq1a1/zNj3Z3x599FFt3brVZV+Ljo7WyJEjtWzZsjL3eejQIf3000+l7m9+fn5q06bNNe9vM2bMUOvWrT061yz98v98+fLla97XQkNDFR4erj179igjI0M9e/Ys9fuidevW8vX1ddm/du3apQMHDuj2228v93eNJ99T2dnZSkxMlJ+fn5YsWeJyHrk833PmlwmaLl68WGLs888/X2T/kqS//vWvmjlzZpn7LYyPjIwsMbZ+/fqKjo52u3/FxsZ63O+MGTPUo0cPhYeHlzq2q3ldwfWSjBgxQgMGDNCtt96q2267TZMnT1ZOTo4ee+yxEuPOnz+vvXv3Ol9///332rJli8LCwhQbG1tibEpKiubPn6/FixcrODhYx44dk/TLL1dgYGCJsaNGjVJycrJiY2N17tw5zZ8/X+np6R59aQUHB6t58+Yu64KCglS7du0i66/2pz/9Sd27d1dcXJyOHDmiMWPGyMfHR3379i213+HDh6t9+/Z6+eWX1adPH23cuFHTp0/X9OnTS40tVFBQoFmzZmnAgAFuL6AoTvfu3fXSSy8pNjZWzZo107fffqs33nhDgwYN8ii+8NaB+Ph47d27VyNHjlSTJk2K7B+l7Q/Dhg3Tiy++qBtvvFENGjTQ6NGjFR0drV69epUae/r0aR04cMB5/2rhL3dkZKRq1qxZbGxUVJTuv/9+bd68WZ999pny8/Od+1pYWJj8/PxK7Lt27dp66aWX1KNHD0VFRenUqVOaMmWKDh8+rAceeKDUcV+dzH19fRUZGan4+PgSY8PCwjRu3Dj17t1bkZGR2rdvn5599lk1atRIXbt2LbXfkSNH6sEHH1SHDh3UuXNnLV26VJ9++qnS09M9+r3Nzs7WokWL9Prrr5fpZ9yxY0eNHDlSgYGBiouL05o1a/T+++/rjTfeKDV20aJFCg8PV2xsrLZt26ahQ4eqV69eSkxM1B//+McSvy9CQ0M1ePBgjRgxQmFhYQoJCdGQIUPUrl07zZ07t9TvmmPHjunYsWPO8W3btk3BwcF666239PHHHxcbW5hcc3NzNW/ePGVnZys7O1uSFB4eriFDhpTY9/79+7Vw4UIlJiYqPDxchw4d0sSJExUYGKi1a9cqLS2t2NjIyEi3FzbFxsbqtddeK7Hfffv2af78+brnnntUu3Ztbd26VcOHD1eHDh307rvvlhjrcDg0cuRIjRkzRi1bttTvfvc7zZkzRzt37lTTpk31+eefl/q9vnfvXq1du1ZffPFFkfF7pMxz3gr29ttvm9jYWOPn52duu+02s2HDhlJjCg+nXL0MGDCg1Fh3cZLMrFmzSo0dNGiQiYuLM35+fiY8PNx06dLF/POf//TgU7rn6TnYBx980ERFRRk/Pz9z/fXXmwcffLDIxQgl+fTTT03z5s2Nv7+/adKkiZk+fXqZxrls2TIjyezatatMcdnZ2Wbo0KEmNjbWBAQEmBtuuMH893//t8nLy/MofuHCheaGG24wfn5+JjIy0qSkpJizZ88WaVfa/lBQUGBGjx5t6tata/z9/U2XLl2cn6W02FmzZrl9f8yYMSXGFh5SdresXr261L4vXLhg7r33XhMdHW38/PxMVFSU6dGjh/Mip7L+Dlx5Drak2NzcXJOYmGjCw8ONr6+viYuLM0888YQ5duyYx/3OmDHDNGrUyAQEBJiWLVs6Tyt4Evvuu++awMDAIj/n0mKPHj1qBg4caKKjo01AQICJj483r7/+uikoKCg19s033zT16tUzvr6+JjY21vzlL39x7qOefF9cuHDB/PGPfzS1atUyNWrUMPfee6/zgq/SYseMGVNsu5Jii/tMkkrc9wrjDx8+bJKTk01ERITx9fU19erVMw8//LDZuXNnub4j9f8fei8t9sCBA6ZDhw4mLCzM+Pv7m0aNGpmRI0c6b0HzpN8JEyaYevXqmRo1aph27dqZr776yuPYUaNGmZiYGJOfn1/sZykJ5eoAALBBpTkHCwBAZUKCBQDABiRYAABsQIIFAMAGJFgAAGxAggUAwAYkWAAAbECCBQDABiRYAABsQIIFAMAGJFgAAGxAggUAwAb/H4C+JL5n4Yj/AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 500x500 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# obtain one batch of test images\n",
    "dataiter = iter(test_input_output)\n",
    "input, expected_output, offset = next(dataiter)\n",
    "\n",
    "# get sample outputs\n",
    "output = model(input)\n",
    "\n",
    "output_tensor = output.cpu().detach()\n",
    "#print(\"output_tensor.shape\", output_tensor.shape)\n",
    "output_tensor = output_tensor.permute(1, 2, 0)\n",
    "#print(\"output_tensor.shape\", output_tensor.shape)\n",
    "output_numpy = output_tensor.numpy()\n",
    "#print(\"output_numpy.shape\", output_numpy.shape)\n",
    "\n",
    "from color_xy import xy_to_color\n",
    "\n",
    "deobfuscated = []\n",
    "COLOR_UNDEFINED = 10\n",
    "for y in range(0,IMAGE_SIZE):\n",
    "    columns2 = [COLOR_UNDEFINED] * IMAGE_SIZE\n",
    "    deobfuscated.append(columns2)\n",
    "\n",
    "for row_index, row in enumerate(output_numpy):\n",
    "    #print(\"row_index\", row_index)\n",
    "    for column_index, xy in enumerate(row):\n",
    "        x, y = xy\n",
    "        distance = x * x + y * y\n",
    "        if distance > 0.35 and distance < 1.5:\n",
    "            color = xy_to_color((x, y), 10, offset)\n",
    "            deobfuscated[row_index][column_index] = color\n",
    "\n",
    "pixels = np.array(deobfuscated, np.int32)\n",
    "result = ajm.Image(pixels, \"predicted\")\n",
    "result.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "789a56c4-e809-462c-8a02-ad6fff0922c0",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}