File size: 11,773 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
use super::{AnalyticsDirectory, BatchProgramAnalyzerPlugin, BatchProgramAnalyzerContext};
use crate::common::create_csv_file;
use crate::common::RecordBigram;
use crate::common::RecordTrigram;
use crate::common::RecordSkipgram;
use crate::common::RecordUnigram;
use loda_rust_core;
use loda_rust_core::parser::{InstructionParameter, ParsedProgram};
use std::path::PathBuf;
use std::error::Error;
use std::collections::HashMap;
type HistogramBigramKey = (String,String);
type HistogramTrigramKey = (String,String,String);
type HistogramSkipgramKey = (String,String);
/// Creates [N-gram] csv files with LODA target parameters.
///
/// Traverses all the programs inside the `loda-programs/oeis` dir.
/// It looks for all the LODA assembly programs there are.
/// Determines the most frequent combinations of target parameters.
///
/// ---
///
/// This outputs a `histogram_target_unigram.csv` file, with this format:
///
/// ```csv
/// count;word
/// 374735;$0
/// 219113;$1
/// 175935;$2
/// 126541;$3
/// 101736;STOP
/// 101736;START
/// 72110;NONE
/// 69648;$4
/// ```
///
/// Learnings from this unigram with LODA programs:
///
/// Learning A: Target register `$0` is by far the most used.
///
/// Learning B: Target register `$1` and `$2` is on a shared 2nd place.
///
/// Learning C: Target register `NONE` is for the `lpe` instruction, that doesn't have any register.
///
/// ---
///
/// This outputs a `histogram_target_bigram.csv` file, with this format:
///
/// ```csv
/// count;word0;word1
/// 166137;$0;$0
/// 100158;$0;STOP
/// 83136;$1;$1
/// 68268;$2;$2
/// 57590;$3;$3
/// 56872;$1;$0
/// 47892;$0;$1
/// 47443;NONE;$0
/// 42897;START;$0
/// 35321;START;$1
/// 34262;$1;$2
/// ```
///
/// Learnings from this bigram with LODA programs:
///
/// Learning A: Target register `$0` is most likely to be followed by another `$0` target register.
///
/// Learning B: Target register `$1` is most likely to be followed by another `$1` target register.
///
/// Learning C: Target register `$2` is most likely to be followed by another `$2` target register.
///
/// Learning D: The program is most likely to start with a `$0` target register.
///
/// Learning E: The program is most likely to stop with a `$0` target register.
///
/// ---
///
/// This outputs a `histogram_target_trigram.csv` file, with this format:
///
/// ```csv
/// count;word0;word1;word2
/// 64171;$0;$0;$0
/// 52591;$0;$0;STOP
/// 31892;$1;$1;$1
/// 29623;$1;$1;$0
/// 28649;NONE;$0;STOP
/// 27618;$1;$0;$0
/// 26024;$3;$3;$3
/// 25285;$2;$2;$2
/// 24374;START;$0;$0
/// ```
///
/// Learnings from this trigram with LODA programs:
///
/// Learning A: Target register `$0` and `$0` is usually followed by a `$0` target register.
///
/// Learning B: Target register `$1` and `$1` is usually followed by a `$1` target register.
///
/// Learning C: Target register `$0` and `$0` is often the last two target registers in a program.
///
/// ---
///
/// This outputs a `histogram_target_skipgram.csv` file, with this format:
///
/// ```csv
/// count;word0;word2
/// 82135;$0;$0
/// 79498;$1;$0
/// 53440;$0;STOP
/// 46047;$2;$0
/// 44468;START;$0
/// 43954;$0;$1
/// 41945;$1;$1
/// 40304;$0;$2
/// ```
///
/// Learnings from this skipgram with LODA programs:
///
/// Learning A: The `$0` and some junk is usually followed by another `$0` target register.
///
/// Learning B: The `$1` and some junk is usually followed by a `$0` target register.
///
/// Learning C: The `$0` and some junk is usually followed by the end of the program.
///
/// [N-gram]: <https://en.wikipedia.org/wiki/N-gram>
pub struct AnalyzeTargetNgram {
analytics_directory: AnalyticsDirectory,
histogram_unigram: HashMap<String,u32>,
histogram_bigram: HashMap<HistogramBigramKey,u32>,
histogram_trigram: HashMap<HistogramTrigramKey,u32>,
histogram_skipgram: HashMap<HistogramSkipgramKey,u32>,
}
impl AnalyzeTargetNgram {
pub fn new(analytics_directory: AnalyticsDirectory) -> Self {
Self {
analytics_directory,
histogram_unigram: HashMap::new(),
histogram_bigram: HashMap::new(),
histogram_trigram: HashMap::new(),
histogram_skipgram: HashMap::new(),
}
}
fn extract_words(parsed_program: &ParsedProgram) -> Vec<String> {
let mut words: Vec<String> = vec!();
words.push("START".to_string());
for instruction in &parsed_program.instruction_vec {
if instruction.parameter_vec.len() < 1 {
words.push("NONE".to_string());
continue;
}
let parameter: &InstructionParameter = &instruction.parameter_vec[0];
words.push(parameter.to_string());
}
words.push("STOP".to_string());
words
}
fn populate_unigram(&mut self, words: &Vec<String>) {
let keys: Vec<String> = words.clone();
for key in keys {
let counter = self.histogram_unigram.entry(key).or_insert(0);
*counter += 1;
}
}
fn populate_bigram(&mut self, words: &Vec<String>) {
let mut keys = Vec::<HistogramBigramKey>::new();
let mut prev_word = String::new();
for (index, word1) in words.iter().enumerate() {
let word0: String = prev_word;
prev_word = word1.clone();
if index == 0 {
continue;
}
let key: HistogramBigramKey = (word0, word1.clone());
keys.push(key);
}
for key in keys {
let counter = self.histogram_bigram.entry(key).or_insert(0);
*counter += 1;
}
}
fn populate_trigram(&mut self, words: &Vec<String>) {
let mut keys = Vec::<HistogramTrigramKey>::new();
let mut prev_prev_word = String::new();
let mut prev_word = String::new();
for (index, word2) in words.iter().enumerate() {
let word0: String = prev_prev_word;
let word1: String = prev_word.clone();
prev_prev_word = prev_word;
prev_word = word2.clone();
if index < 2 {
continue;
}
let key: HistogramTrigramKey = (word0, word1, word2.clone());
keys.push(key);
}
for key in keys {
let counter = self.histogram_trigram.entry(key).or_insert(0);
*counter += 1;
}
}
fn populate_skipgram(&mut self, words: &Vec<String>) {
let mut keys = Vec::<HistogramSkipgramKey>::new();
let mut prev_prev_word = String::new();
let mut prev_word = String::new();
for (index, word2) in words.iter().enumerate() {
let word0: String = prev_prev_word;
prev_prev_word = prev_word;
prev_word = word2.clone();
if index < 2 {
continue;
}
let key: HistogramSkipgramKey = (word0, word2.clone());
keys.push(key);
}
for key in keys {
let counter = self.histogram_skipgram.entry(key).or_insert(0);
*counter += 1;
}
}
fn save_unigram(&self) -> Result<(), Box<dyn Error>> {
// Convert from dictionary to array
let mut records = Vec::<RecordUnigram>::new();
for (histogram_key, histogram_count) in &self.histogram_unigram {
let record = RecordUnigram {
count: *histogram_count,
word: histogram_key.clone(),
};
records.push(record);
}
// Move the most frequently occuring items to the top
// Move the lesser used items to the bottom
records.sort_unstable_by_key(|item| (item.count, item.word.clone()));
records.reverse();
// Save as a CSV file
let output_path: PathBuf = self.analytics_directory.histogram_target_unigram_file();
create_csv_file(&records, &output_path)
}
fn save_bigram(&self) -> Result<(), Box<dyn Error>> {
// Convert from dictionary to array
let mut records = Vec::<RecordBigram>::new();
for (histogram_key, histogram_count) in &self.histogram_bigram {
let record = RecordBigram {
count: *histogram_count,
word0: histogram_key.0.clone(),
word1: histogram_key.1.clone()
};
records.push(record);
}
// Move the most frequently occuring items to the top
// Move the lesser used items to the bottom
records.sort_unstable_by_key(|item| (item.count, item.word0.clone(), item.word1.clone()));
records.reverse();
// Save as a CSV file
let output_path: PathBuf = self.analytics_directory.histogram_target_bigram_file();
create_csv_file(&records, &output_path)
}
fn save_trigram(&self) -> Result<(), Box<dyn Error>> {
// Convert from dictionary to array
let mut records = Vec::<RecordTrigram>::new();
for (histogram_key, histogram_count) in &self.histogram_trigram {
let record = RecordTrigram {
count: *histogram_count,
word0: histogram_key.0.clone(),
word1: histogram_key.1.clone(),
word2: histogram_key.2.clone()
};
records.push(record);
}
// Move the most frequently occuring items to the top
// Move the lesser used items to the bottom
records.sort_unstable_by_key(|item| (item.count, item.word0.clone(), item.word1.clone(), item.word2.clone()));
records.reverse();
// Save as a CSV file
let output_path: PathBuf = self.analytics_directory.histogram_target_trigram_file();
create_csv_file(&records, &output_path)
}
fn save_skipgram(&self) -> Result<(), Box<dyn Error>> {
// Convert from dictionary to array
let mut records = Vec::<RecordSkipgram>::new();
for (histogram_key, histogram_count) in &self.histogram_skipgram {
let record = RecordSkipgram {
count: *histogram_count,
word0: histogram_key.0.clone(),
word2: histogram_key.1.clone()
};
records.push(record);
}
// Move the most frequently occuring items to the top
// Move the lesser used items to the bottom
records.sort_unstable_by_key(|item| (item.count, item.word0.clone(), item.word2.clone()));
records.reverse();
// Save as a CSV file
let output_path: PathBuf = self.analytics_directory.histogram_target_skipgram_file();
create_csv_file(&records, &output_path)
}
}
impl BatchProgramAnalyzerPlugin for AnalyzeTargetNgram {
fn plugin_name(&self) -> &'static str {
"AnalyzeTargetNgram"
}
fn analyze(&mut self, context: &BatchProgramAnalyzerContext) -> Result<(), Box<dyn Error>> {
let words: Vec<String> = Self::extract_words(&context.parsed_program);
self.populate_unigram(&words);
self.populate_bigram(&words);
self.populate_trigram(&words);
self.populate_skipgram(&words);
Ok(())
}
fn save(&self) -> Result<(), Box<dyn Error>> {
self.save_unigram()?;
self.save_bigram()?;
self.save_trigram()?;
self.save_skipgram()?;
Ok(())
}
fn human_readable_summary(&self) -> String {
let rows: Vec<String> = vec![
format!("unigram: {:?}", self.histogram_unigram.len()),
format!("bigram: {:?}", self.histogram_bigram.len()),
format!("trigram: {:?}", self.histogram_trigram.len()),
format!("skipgram: {:?}", self.histogram_skipgram.len()),
];
rows.join(", ")
}
}
|