File size: 6,943 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
use super::AnalyticsDirectory;
use loda_rust_core::util::BigIntVec;
use loda_rust_core::oeis::OeisIdHashSet;
use crate::mine::FunnelConfig;
use crate::config::Config;
use crate::common::{create_csv_file, SimpleLog};
use crate::oeis::{ProcessStrippedFile, StrippedRow};
use num_bigint::{BigInt, ToBigInt};
use std::convert::TryFrom;
use std::io;
use std::path::PathBuf;
use std::fs::File;
use std::io::BufReader;
use std::collections::HashMap;
use std::time::Instant;
use serde::Serialize;
use console::Style;
use indicatif::{HumanDuration, ProgressBar};
static DISCARD_EXTREME_VALUES_BEYOND_THIS_LIMIT: i64 = 400;
/// This code identifies a good magic value for the bloomfilter.
/// It should not be a value that is used a lot, so any value from
/// the top 100 most used terms will be a terrible choice.
/// I made the mistake of choosing zero as magic value, causing
/// +400.000 files to be generated in less than 20 minutes!
///
/// It should be a value that is rarely used, so that there are as
/// few false-positives as possible.
/// At the same time it shouldn't be a huge value, like `0xCAFEBABE`.
/// BigInt/String manipulation is expensive, and there is a lot of it,
/// thus the wildcard value should be as few bytes as possible,
/// so there are fewer bytes to be allocated/compared.
///
/// The most frequent occuring terms in the OEIS 'stripped' file are:
///
/// ```csv
/// count;value
/// 3277144;0
/// 791230;1
/// 402661;2
/// 295319;3
/// 251879;4
/// 207336;5
/// 187158;6
/// 161854;7
/// 155826;8
/// 135863;9
/// 78968;10
/// snip
/// 39094;-1
/// snip
/// 13576;-2
/// snip
/// 8044;-3
/// snip
/// 85;-67
/// snip
/// 61;-86
/// ```
///
/// The value `-67` only occurs 85 times, and `-86` occurs 61 times,
/// so these may be good choices for use as a magic value.
///
/// Number of extreme values: 4084887,
/// that are outside the range -400 .. +400.
pub struct HistogramStrippedFile {
analytics_directory: AnalyticsDirectory,
config: Config,
simple_log: SimpleLog,
histogram: HashMap<i64,u32>,
}
impl HistogramStrippedFile {
pub fn run(analytics_directory: AnalyticsDirectory, simple_log: SimpleLog) -> anyhow::Result<()> {
let config = Config::load();
let mut instance = Self {
analytics_directory,
config,
simple_log,
histogram: HashMap::new(),
};
instance.run_inner()?;
Ok(())
}
fn run_inner(&mut self) -> anyhow::Result<()> {
self.simple_log.println("\nHistogram of OEIS 'stripped' file");
println!("Histogram of OEIS 'stripped' file");
let oeis_stripped_file: PathBuf = self.config.oeis_stripped_file();
assert!(oeis_stripped_file.is_absolute());
assert!(oeis_stripped_file.is_file());
let file = File::open(oeis_stripped_file).unwrap();
let filesize: usize = file.metadata().unwrap().len() as usize;
let mut reader = BufReader::new(file);
Self::histogram_of_terms_in_oeis_stripped_file(
self.simple_log.clone(),
&mut reader,
filesize,
&mut self.histogram,
)?;
self.save()?;
Ok(())
}
fn histogram_of_terms_in_oeis_stripped_file(
simple_log: SimpleLog,
oeis_stripped_file_reader: &mut dyn io::BufRead,
filesize: usize,
histogram: &mut HashMap::<i64,u32>,
) -> anyhow::Result<()> {
let start = Instant::now();
let mut count_big: u32 = 0;
let mut count_small: u32 = 0;
let mut count_wildcard: u32 = 0;
let pb = ProgressBar::new(filesize as u64);
let padding_value_i64: i64 = 0xC0FFEE;
let padding_value: BigInt = padding_value_i64.to_bigint().unwrap();
let process_callback = |stripped_sequence: &StrippedRow, count_bytes: usize| {
pb.set_position(count_bytes as u64);
let all_vec: &BigIntVec = stripped_sequence.terms();
for value in all_vec {
let key: i64 = match i64::try_from(value).ok() {
Some(value) => value,
None => {
count_big += 1;
continue;
}
};
if key == padding_value_i64 {
count_wildcard += 1;
continue;
}
if key.abs() > DISCARD_EXTREME_VALUES_BEYOND_THIS_LIMIT {
count_big += 1;
continue;
}
let counter = histogram.entry(key).or_insert(0);
*counter += 1;
count_small += 1;
}
};
let oeis_ids_to_ignore = OeisIdHashSet::new();
let mut stripped_sequence_processor = ProcessStrippedFile::new();
stripped_sequence_processor.execute(
oeis_stripped_file_reader,
FunnelConfig::MINIMUM_NUMBER_OF_REQUIRED_TERMS,
FunnelConfig::TERM_COUNT,
&oeis_ids_to_ignore,
&padding_value,
true,
process_callback
);
pb.finish_and_clear();
let green_bold = Style::new().green().bold();
println!(
"{:>12} Histogram of OEIS 'stripped' file, in {}",
green_bold.apply_to("Finished"),
HumanDuration(start.elapsed())
);
simple_log.println(format!("number of small values: {}", count_small));
simple_log.println(format!("number of big values: {}", count_big));
simple_log.println(format!("number of wildcard values: {}", count_wildcard));
Ok(())
}
fn save(&self) -> anyhow::Result<()> {
let mut records = Vec::<Record>::new();
for (histogram_key, histogram_count) in &self.histogram {
let record = Record {
count: *histogram_count,
value: *histogram_key,
};
records.push(record);
}
for i in -DISCARD_EXTREME_VALUES_BEYOND_THIS_LIMIT..(DISCARD_EXTREME_VALUES_BEYOND_THIS_LIMIT+1) {
if !self.histogram.contains_key(&i) {
let record = Record {
count: 0,
value: i,
};
records.push(record);
}
}
// Move the most frequently occuring items to the top
// Move the lesser used items to the bottom
records.sort_unstable_by_key(|item| (item.count, item.value.clone()));
records.reverse();
// Save as a CSV file
let output_path: PathBuf = self.analytics_directory.histogram_oeis_stripped_file();
create_csv_file(&records, &output_path)
.map_err(|e| anyhow::anyhow!("HistogramStrippedFile.save - create_csv_file error: {:?}", e))?;
Ok(())
}
}
#[derive(Debug, Serialize)]
struct Record {
count: u32,
value: i64,
}
|