File size: 9,015 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
use super::{Image, ImageHistogram, Histogram, Color, Symmetry, ImageMask, ImageRepairSymmetry};
pub struct AutoRepairSymmetry {}
impl AutoRepairSymmetry {
pub fn execute(symmetry: &Symmetry, repair_mask: &Image, image_to_repair: &Image) -> anyhow::Result<Image> {
if repair_mask.size() != image_to_repair.size() {
return Err(anyhow::anyhow!("size must be the same"));
}
// Sometimes it's not possible to compute the entire output just by looking at the input pixels alone.
// Fill the repair mask with `Color::CannotCompute`, so that it's clear there was a problem
// computing pixel data for these pixels.
// This happens when the symmetric shape has an inset, and there is masked out an area
// bigger than what is possible to recover just by looking at the input pixels alone.
let mut result_image: Image = repair_mask.select_from_image_and_color(image_to_repair, Color::CannotCompute as u8)?;
// horizontal
if let Some(r) = symmetry.horizontal_rect {
result_image.repair_symmetry_horizontal(r)?;
}
// vertical
if let Some(r) = symmetry.vertical_rect {
result_image.repair_symmetry_vertical(r)?;
}
// diagonal a
if let Some(r) = symmetry.diagonal_a_rect {
result_image.repair_symmetry_diagonal_a(r)?;
}
// diagonal b
if let Some(r) = symmetry.diagonal_b_rect {
result_image.repair_symmetry_diagonal_b(r)?;
}
let histogram: Histogram = result_image.histogram_all();
if histogram.number_of_counters_greater_than_zero() < 2 {
return Err(anyhow::anyhow!("Expected the repaired symmetric pattern to contain 2 or more unique colors"));
}
// Reject if more than 25% of the pixels could not be computed
let problem_count: u32 = histogram.counters()[Color::CannotCompute as usize];
if problem_count > (image_to_repair.width() as u32) * (image_to_repair.height() as u32) / 4 {
return Err(anyhow::anyhow!("Too many pixels could not be computed. This may not be a symmetric image"));
}
// Most of the repaired images are junk that isn't symmetric.
let sym = Symmetry::analyze(&result_image)?;
let sym_horizontal: bool = sym.horizontal_found && sym.horizontal_mismatches == 0;
let sym_vertical: bool = sym.vertical_found && sym.vertical_mismatches == 0;
let sym_diagonal_a: bool = sym.diagonal_a_found && sym.diagonal_a_mismatches == 0;
let sym_diagonal_b: bool = sym.diagonal_b_found && sym.diagonal_b_mismatches == 0;
let is_symmetric: bool = sym_horizontal || sym_vertical || sym_diagonal_a || sym_diagonal_b;
if !is_symmetric {
return Err(anyhow::anyhow!("Unable to repair image. No symmetry after repair."));
}
Ok(result_image)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::arc::ImageTryCreate;
#[test]
fn test_10000_horizontal() {
// Arrange
let a = Color::CannotCompute as u8;
let pixels: Vec<u8> = vec![
1, 1, 2, 1, 1,
2, a, 0, 1, 2,
3, a, 3, 3, 3,
4, 0, 0, a, a,
1, 1, 0, a, a
];
let image_to_repair: Image = Image::try_create(5, 5, pixels).expect("image");
let symmetry: Symmetry = Symmetry::analyze(&image_to_repair).expect("image");
let repair_pixels: Vec<u8> = vec![
0, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 0, 1, 1,
0, 0, 0, 1, 1,
];
let repair_mask: Image = Image::try_create(5, 5, repair_pixels).expect("image");
// Act
let actual: Image = AutoRepairSymmetry::execute(&symmetry, &repair_mask, &image_to_repair).expect("image");
// Assert
let expected_pixels: Vec<u8> = vec![
1, 1, 2, 1, 1,
2, 1, 0, 1, 2,
3, 3, 3, 3, 3,
4, 0, 0, 0, 4,
1, 1, 0, 1, 1
];
let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image");
assert_eq!(actual, expected);
}
#[test]
fn test_20000_vertical() {
// Arrange
let a = Color::CannotCompute as u8;
let pixels: Vec<u8> = vec![
1, 1, 5, 7, 3,
2, 0, 5, 7, a,
3, 1, 5, 0, 3,
2, 0, a, a, 3,
1, 1, a, a, 3,
];
let image_to_repair: Image = Image::try_create(5, 5, pixels).expect("image");
let symmetry: Symmetry = Symmetry::analyze(&image_to_repair).expect("image");
let repair_pixels: Vec<u8> = vec![
0, 0, 0, 0, 0,
0, 0, 0, 0, 1,
0, 0, 0, 0, 0,
0, 0, 1, 1, 0,
0, 0, 1, 1, 0,
];
let repair_mask: Image = Image::try_create(5, 5, repair_pixels).expect("image");
// Act
let actual: Image = AutoRepairSymmetry::execute(&symmetry, &repair_mask, &image_to_repair).expect("image");
// Assert
let expected_pixels: Vec<u8> = vec![
1, 1, 5, 7, 3,
2, 0, 5, 7, 3,
3, 1, 5, 0, 3,
2, 0, 5, 7, 3,
1, 1, 5, 7, 3,
];
let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image");
assert_eq!(actual, expected);
}
#[test]
fn test_30000_diagonal_a() {
// Arrange
let a = Color::CannotCompute as u8;
let pixels: Vec<u8> = vec![
1, a, a, 0, 0,
1, 0, a, a, a,
1, 1, 1, 0, a,
0, 0, 0, 5, 5,
0, 0, 0, 5, 5,
];
let image_to_repair: Image = Image::try_create(5, 5, pixels).expect("image");
let symmetry: Symmetry = Symmetry::analyze(&image_to_repair).expect("image");
let repair_pixels: Vec<u8> = vec![
0, 1, 1, 0, 0,
0, 0, 1, 1, 1,
0, 0, 0, 0, 1,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
];
let repair_mask: Image = Image::try_create(5, 5, repair_pixels).expect("image");
// Act
let actual: Image = AutoRepairSymmetry::execute(&symmetry, &repair_mask, &image_to_repair).expect("image");
// Assert
let expected_pixels: Vec<u8> = vec![
1, 1, 1, 0, 0,
1, 0, 1, 0, 0,
1, 1, 1, 0, 0,
0, 0, 0, 5, 5,
0, 0, 0, 5, 5,
];
let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image");
assert_eq!(actual, expected);
}
#[test]
fn test_40000_diagonal_b() {
// Arrange
let a = Color::CannotCompute as u8;
let pixels: Vec<u8> = vec![
0, 0, a, a, 1,
a, a, a, 0, 1,
a, 0, 1, 1, 1,
5, 5, 0, 0, 0,
5, 5, 0, 0, 0,
];
let image_to_repair: Image = Image::try_create(5, 5, pixels).expect("image");
let symmetry: Symmetry = Symmetry::analyze(&image_to_repair).expect("image");
let repair_pixels: Vec<u8> = vec![
0, 0, 1, 1, 0,
1, 1, 1, 0, 0,
1, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
];
let repair_mask: Image = Image::try_create(5, 5, repair_pixels).expect("image");
// Act
let actual: Image = AutoRepairSymmetry::execute(&symmetry, &repair_mask, &image_to_repair).expect("image");
// Assert
let expected_pixels: Vec<u8> = vec![
0, 0, 1, 1, 1,
0, 0, 1, 0, 1,
0, 0, 1, 1, 1,
5, 5, 0, 0, 0,
5, 5, 0, 0, 0,
];
let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image");
assert_eq!(actual, expected);
}
#[test]
fn test_50000_nosymmetry() {
// Arrange
let pixels: Vec<u8> = vec![
1, 2, 3, 4, 5, 6,
1, 2, 3, 4, 5, 6,
8, 8, 8, 8, 8, 8,
8, 1, 8, 1, 8, 1,
0, 0, 1, 1, 2, 2,
0, 0, 1, 1, 2, 2,
];
let image_to_repair: Image = Image::try_create(6, 6, pixels).expect("image");
let symmetry: Symmetry = Symmetry::analyze(&image_to_repair).expect("image");
let repair_pixels: Vec<u8> = vec![
0, 0, 1, 1, 0, 0,
1, 1, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
];
let repair_mask: Image = Image::try_create(6, 6, repair_pixels).expect("image");
// Act
let error = AutoRepairSymmetry::execute(&symmetry, &repair_mask, &image_to_repair).expect_err("should fail");
// Assert
let message: String = format!("{:?}", error);
assert_eq!(message.contains("No symmetry after repair"), true);
}
}
|