File size: 24,387 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
//! Generate a dataset with basic trivial simple ARC tasks.
//! https://github.com/neoneye/arc-dataset-diva
//!
//! Ideas for more task types:
//! MixedOrientationOutputSolidColor,
//! MixedOrientationRotateOutputSolidColor,
//! LandscapeInputIsOneSolidColorButOutputIsTwoDifferentColors, // needs more than 5 training pairs.
use super::{Image, HtmlLog, ReverseColorPopularity, ImageRotate90, ImageTryCreate, ExportARCTaskJson};
use rand::Rng;
use rand::seq::SliceRandom;
use rand::{rngs::StdRng, SeedableRng};
use serde::Serialize;
use std::fs;
use std::path::{PathBuf, Path};
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, Serialize)]
enum TwoPixelBasicTransformation {
LandscapeOrientationReverse,
LandscapeOrientationRotateCW,
LandscapeOrientationRotateCCW,
PortraitOrientationReverse,
PortraitOrientationRotateCW,
PortraitOrientationRotateCCW,
MixedOrientationReverse,
MixedOrientationRotateCW,
MixedOrientationRotateCCW,
}
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, Serialize, PartialEq, Eq)]
enum TwoPixelSpecialTransformation {
LandscapeOrientation,
PortraitOrientation,
MixedOrientation,
}
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, Serialize)]
enum TwoPixelTransformation {
Basic { basic: TwoPixelBasicTransformation },
Special { special: TwoPixelSpecialTransformation },
}
#[allow(dead_code)]
#[derive(Debug, Serialize)]
struct DatasetItem {
dirname: String,
filename: String,
json: String,
}
#[allow(dead_code)]
pub struct GenerateDataset {
dataset_items: Vec<DatasetItem>,
}
impl GenerateDataset {
#[allow(dead_code)]
fn new() -> Self {
Self {
dataset_items: vec!(),
}
}
#[allow(dead_code)]
fn populate(&mut self, number_of_items: u32, print_to_htmllog: bool) -> anyhow::Result<()> {
let transformations: Vec<TwoPixelTransformation> = vec![
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::LandscapeOrientationReverse },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::LandscapeOrientationRotateCW },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::LandscapeOrientationRotateCCW },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::PortraitOrientationReverse },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::PortraitOrientationRotateCW },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::PortraitOrientationRotateCCW },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::MixedOrientationReverse },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::MixedOrientationRotateCW },
TwoPixelTransformation::Basic { basic: TwoPixelBasicTransformation::MixedOrientationRotateCCW },
TwoPixelTransformation::Special { special: TwoPixelSpecialTransformation::LandscapeOrientation },
TwoPixelTransformation::Special { special: TwoPixelSpecialTransformation::PortraitOrientation },
TwoPixelTransformation::Special { special: TwoPixelSpecialTransformation::MixedOrientation },
];
for i in 0..number_of_items {
if print_to_htmllog {
HtmlLog::text(format!("iteration: {}", i));
}
if i % 100000 == 0 {
println!("iteration: {} number_of_items: {}", i, number_of_items);
}
let transform_index: usize = (i as usize) % transformations.len();
let transformation: TwoPixelTransformation = transformations[transform_index].clone();
// Introducing a new transformation does not impact the random seed.
let random_seed: u64 = ((i as usize / transformations.len()) + (transform_index * 1000000)) as u64;
match transformation {
TwoPixelTransformation::Basic { basic } => {
let dataset_item: DatasetItem = Self::generate_twopixels_basic(basic.clone(), random_seed, print_to_htmllog)?;
self.dataset_items.push(dataset_item);
},
TwoPixelTransformation::Special { special } => {
let dataset_item: DatasetItem = Self::generate_twopixels_special(special.clone(), random_seed, print_to_htmllog)?;
self.dataset_items.push(dataset_item);
},
}
}
Ok(())
}
#[allow(dead_code)]
fn save(&self, save_dir: &Path) -> anyhow::Result<()> {
if !save_dir.is_dir() {
fs::create_dir(save_dir)?;
}
assert!(save_dir.is_dir());
for dataset_item in &self.dataset_items {
let task_type_dir: PathBuf = save_dir.join(&dataset_item.dirname);
if !task_type_dir.is_dir() {
fs::create_dir(&task_type_dir)?;
}
assert!(task_type_dir.is_dir());
let path: PathBuf = task_type_dir.join(&dataset_item.filename);
fs::write(&path, &dataset_item.json)?;
}
Ok(())
}
/// The two colors inside each pair are always different.
///
/// The pairs are always different from each other.
///
/// Each color is only used once.
fn five_unique_color_pairs(rng: &mut StdRng) -> Vec<(u8, u8)> {
let mut colors: Vec<u8> = (0..=9).collect();
colors.shuffle(rng);
let mut pairs = Vec::<(u8, u8)>::new();
while colors.len() >= 2 {
let color0: u8 = colors.remove(0);
let color1: u8 = colors.remove(0);
pairs.push((color0, color1));
}
assert!(pairs.len() == 5);
pairs
}
fn alternate(count: usize, values: Vec<u8>) -> Vec<u8> {
assert!(values.len() >= 2);
let mut result = Vec::<u8>::new();
for i in 0..count {
let index: usize = i % values.len();
result.push(values[index]);
}
result
}
/// Example with two values: `[0, 1]`, then roughly half of the items are `0` and the other half are `1`.
///
/// When `N` is even there is half 0 and half 1.
///
/// When `N` is odd then considering `N-1` have half 0 and half 1. And the last one is either 0 or 1.
fn round_robin_shuffled(rng: &mut StdRng, count: usize, values: &Vec<u8>) -> Vec<u8> {
assert!(values.len() >= 2);
// In case there is an even number of items, then both value0 and value1 gets used equally. Good.
// In case there are an odd number of items, then one of the values is used one more time than the other value. Bad.
// Shuffle to prevent bias.
let mut values: Vec<u8> = values.clone();
values.shuffle(rng);
let mut items: Vec<u8> = Self::alternate(count, values);
// Now the items are alternating. Bad.
// Shuffle to prevent bias.
items.shuffle(rng);
items
}
fn generate_twopixels_basic(transformation: TwoPixelBasicTransformation, random_seed: u64, print_to_htmllog: bool) -> anyhow::Result<DatasetItem> {
let mut rng: StdRng = SeedableRng::seed_from_u64(random_seed);
let insert_same_color_when_reaching_this_limit: u8 = 50;
let insert_same_value: u8 = rng.gen_range(0..=100);
let pair_count_values: Vec<(u8, u8)> = vec![
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)
];
let (train_count, test_count) = *pair_count_values.choose(&mut rng).unwrap();
let pair_count: u8 = train_count + test_count;
let zero_one: Vec<u8> = vec![0, 1];
let mut mixed_orientation_vec = Vec::<u8>::new();
mixed_orientation_vec.extend(Self::round_robin_shuffled(&mut rng, train_count as usize, &zero_one));
mixed_orientation_vec.extend(Self::round_robin_shuffled(&mut rng, test_count as usize, &zero_one));
assert!(mixed_orientation_vec.len() == pair_count as usize);
// There are max 4 `train` pairs. Since there are 5 unique color pairs, we can be
// certain that the `train` pairs have different colors from each other.
let mut color_pairs: Vec<(u8, u8)> = Self::five_unique_color_pairs(&mut rng);
color_pairs.truncate(pair_count as usize);
// Fill up with more random colors until there are enough color pairs.
// The `test` pairs comes last, so it's ok if they are not as unique as the `train` pairs.
while color_pairs.len() < pair_count as usize {
let color0: u8 = rng.gen_range(0..=9);
let color1: u8 = rng.gen_range(0..=9);
if color0 == color1 {
continue;
}
if color_pairs.contains(&(color0, color1)) {
continue;
}
color_pairs.push((color0, color1));
}
assert!(color_pairs.len() == pair_count as usize);
// Make one of the `test` pairs slightly ambiguous so it's more tricky to solve.
// It doesn't make sense when it's a `flip` operation where the two pixels exchange places.
// then don't make it ambiguous, because it would cause input and output to be identical.
// we want input and output to always be different.
let allow_same_color: bool = match transformation {
TwoPixelBasicTransformation::LandscapeOrientationReverse => false,
TwoPixelBasicTransformation::LandscapeOrientationRotateCW => true,
TwoPixelBasicTransformation::LandscapeOrientationRotateCCW => true,
TwoPixelBasicTransformation::PortraitOrientationReverse => false,
TwoPixelBasicTransformation::PortraitOrientationRotateCW => true,
TwoPixelBasicTransformation::PortraitOrientationRotateCCW => true,
TwoPixelBasicTransformation::MixedOrientationReverse => false,
TwoPixelBasicTransformation::MixedOrientationRotateCW => true,
TwoPixelBasicTransformation::MixedOrientationRotateCCW => true,
};
if allow_same_color && train_count >= 2 && test_count >= 1 && insert_same_value >= insert_same_color_when_reaching_this_limit {
// Replace a color_pair so it uses the same color for both its colors, so it's ambiguous and more tricky to solve.
let index: usize = rng.gen_range(train_count..pair_count) as usize;
let color: u8 = rng.gen_range(0..=9);
color_pairs[index] = (color, color);
}
if print_to_htmllog {
HtmlLog::text(format!("pair_count: {}", pair_count));
}
let mut export = ExportARCTaskJson::new();
let mut color_pair_strings = Vec::<String>::new();
for i in 0..pair_count {
let is_train: bool = i < train_count;
// Pick two random colors
// The colors are always different from each other for the `train` pairs.
// The colors are sometimes the same and sometimes different for the `test` pairs.
let (color0, color1) = color_pairs.remove(0);
let input_landscape: Image = Image::try_create(2, 1, vec![color0, color1])?;
let input_portrait: Image = input_landscape.rotate_cw()?;
// Pick either input_landscape or input_portrait based on a random number
// Make sure that both landscape and portrait orientations are used for the training pairs, so 2 or more train pairs.
// Make sure that both landscape and portrait orientations are used for the test pairs, so 2 or more test pairs.
let input_mixed: Image = match mixed_orientation_vec[i as usize] {
0 => input_landscape.clone(),
1 => input_portrait.clone(),
_ => unreachable!(),
};
let input: &Image = match transformation {
TwoPixelBasicTransformation::LandscapeOrientationReverse => &input_landscape,
TwoPixelBasicTransformation::LandscapeOrientationRotateCW => &input_landscape,
TwoPixelBasicTransformation::LandscapeOrientationRotateCCW => &input_landscape,
TwoPixelBasicTransformation::PortraitOrientationReverse => &input_portrait,
TwoPixelBasicTransformation::PortraitOrientationRotateCW => &input_portrait,
TwoPixelBasicTransformation::PortraitOrientationRotateCCW => &input_portrait,
TwoPixelBasicTransformation::MixedOrientationReverse => &input_mixed,
TwoPixelBasicTransformation::MixedOrientationRotateCW => &input_mixed,
TwoPixelBasicTransformation::MixedOrientationRotateCCW => &input_mixed,
};
let output_reversed: Image = ReverseColorPopularity::apply_to_image(input)?;
let output_rotate_ccw: Image = input.rotate_ccw()?;
let output_rotate_cw: Image = input.rotate_cw()?;
let output: &Image = match transformation {
TwoPixelBasicTransformation::LandscapeOrientationReverse => &output_reversed,
TwoPixelBasicTransformation::LandscapeOrientationRotateCW => &output_rotate_cw,
TwoPixelBasicTransformation::LandscapeOrientationRotateCCW => &output_rotate_ccw,
TwoPixelBasicTransformation::PortraitOrientationReverse => &output_reversed,
TwoPixelBasicTransformation::PortraitOrientationRotateCW => &output_rotate_cw,
TwoPixelBasicTransformation::PortraitOrientationRotateCCW => &output_rotate_ccw,
TwoPixelBasicTransformation::MixedOrientationReverse => &output_reversed,
TwoPixelBasicTransformation::MixedOrientationRotateCW => &output_rotate_cw,
TwoPixelBasicTransformation::MixedOrientationRotateCCW => &output_rotate_ccw,
};
if print_to_htmllog {
HtmlLog::compare_images(vec![input.clone(), output.clone()]);
}
assert!(input != output, "input and output must be different");
if is_train {
export.push_train(&input, &output);
} else {
export.push_test(&input, &output);
}
color_pair_strings.push(format!("{}{}", color0, color1));
}
let transformation_name: &str = match transformation {
TwoPixelBasicTransformation::LandscapeOrientationReverse => "land_rev",
TwoPixelBasicTransformation::LandscapeOrientationRotateCW => "land_cw",
TwoPixelBasicTransformation::LandscapeOrientationRotateCCW => "land_ccw",
TwoPixelBasicTransformation::PortraitOrientationReverse => "port_rev",
TwoPixelBasicTransformation::PortraitOrientationRotateCW => "port_cw",
TwoPixelBasicTransformation::PortraitOrientationRotateCCW => "port_ccw",
TwoPixelBasicTransformation::MixedOrientationReverse => "landport_rev",
TwoPixelBasicTransformation::MixedOrientationRotateCW => "landport_cw",
TwoPixelBasicTransformation::MixedOrientationRotateCCW => "landport_ccw",
};
let color_pair_strings_joined: String = color_pair_strings.join("_");
let filename: String = format!("{}_{}.json", transformation_name, color_pair_strings_joined);
let dataset_item: DatasetItem = DatasetItem {
json: export.to_string()?,
dirname: transformation_name.to_string(),
filename,
};
Ok(dataset_item)
}
fn generate_twopixels_special(transformation: TwoPixelSpecialTransformation, random_seed: u64, print_to_htmllog: bool) -> anyhow::Result<DatasetItem> {
let mut rng: StdRng = SeedableRng::seed_from_u64(random_seed);
let pair_count_values: Vec<(u8, u8)> = match transformation {
TwoPixelSpecialTransformation::LandscapeOrientation | TwoPixelSpecialTransformation::PortraitOrientation => vec![
// minimum 2 `train` pairs are needed to make sense of the rules
(2, 2), (2, 3), (3, 2), (3, 3)
],
TwoPixelSpecialTransformation::MixedOrientation => vec![
// minimum 4 `train` pairs are needed to make sense of the rules
(4, 2), (4, 3), (5, 2), (5, 3)
],
};
let (train_count, test_count) = *pair_count_values.choose(&mut rng).unwrap();
let pair_count: u8 = train_count + test_count;
let mut values: Vec<u8> = (0..pair_count).collect();
values.shuffle(&mut rng);
// Determine which orientation to use and when to assign the same color to both pixels.
let zero_one_two_tree: Vec<u8> = match transformation {
TwoPixelSpecialTransformation::LandscapeOrientation | TwoPixelSpecialTransformation::PortraitOrientation => {
// bit[1] = unused, bit[0] = same color. In to total 2 combinations.
// 0 = same color
// 1 = different color
vec![0, 1]
},
TwoPixelSpecialTransformation::MixedOrientation => {
// bit[1] = orientation, bit[0] = same color. In to total 4 combinations.
// 0 = same color, landscape
// 1 = different color, landscape
// 2 = same color, portrait
// 3 = different color, portrait
vec![0, 1, 2, 3]
}
};
let mut mode_vec = Vec::<u8>::new();
mode_vec.extend(Self::round_robin_shuffled(&mut rng, train_count as usize, &zero_one_two_tree));
mode_vec.extend(Self::round_robin_shuffled(&mut rng, test_count as usize, &zero_one_two_tree));
assert!(mode_vec.len() == pair_count as usize);
// Assign colors to each pair.
let mut color_pairs: Vec<(u8, u8)> = Self::five_unique_color_pairs(&mut rng);
color_pairs.truncate(pair_count as usize);
while color_pairs.len() < pair_count as usize {
let color0: u8 = rng.gen_range(0..=9);
let color1: u8 = rng.gen_range(0..=9);
if color0 == color1 {
continue;
}
if color_pairs.contains(&(color0, color1)) {
continue;
}
color_pairs.push((color0, color1));
}
assert!(color_pairs.len() == pair_count as usize);
let mut available_colors: Vec<u8> = (0..=9).collect();
available_colors.shuffle(&mut rng);
// Assign same color to both pixels in roughly half of the pairs.
for i in 0..pair_count {
let value: u8 = mode_vec[i as usize];
let assign_same_color: bool = (value & 1) == 0;
if !assign_same_color {
continue;
}
let color: u8 = available_colors.remove(0);
color_pairs[i as usize] = (color, color);
// println!("assigning same color: {} to index: {}", color, i);
}
if print_to_htmllog {
HtmlLog::text(format!("pair_count: {}", pair_count));
}
let mut export = ExportARCTaskJson::new();
let mut color_pair_strings = Vec::<String>::new();
for i in 0..pair_count {
let is_train: bool = i < train_count;
// Pick two random colors
// The colors are always different from each other for the `train` pairs.
// The colors are sometimes the same and sometimes different for the `test` pairs.
let (color0, color1) = color_pairs.remove(0);
let input_landscape: Image = Image::try_create(2, 1, vec![color0, color1])?;
let input_portrait: Image = input_landscape.rotate_cw()?;
// Pick either input_landscape or input_portrait based on a random number
// Make sure that both landscape and portrait orientations are used for the training pairs, so 2 or more train pairs.
// Make sure that both landscape and portrait orientations are used for the test pairs, so 2 or more test pairs.
let orientation: bool = mode_vec[i as usize] & 2 == 0;
let input_mixed: Image = match orientation {
false => input_landscape.clone(),
true => input_portrait.clone(),
};
let input: &Image = match transformation {
TwoPixelSpecialTransformation::LandscapeOrientation => &input_landscape,
TwoPixelSpecialTransformation::PortraitOrientation => &input_portrait,
TwoPixelSpecialTransformation::MixedOrientation => &input_mixed,
};
let output_reversed: Image = ReverseColorPopularity::apply_to_image(input)?;
let output_rotate_ccw: Image = input.rotate_ccw()?;
let output: &Image = if color0 == color1 {
&output_rotate_ccw
} else {
&output_reversed
};
if print_to_htmllog {
HtmlLog::compare_images(vec![input.clone(), output.clone()]);
}
assert!(input != output, "input and output must be different");
if is_train {
export.push_train(&input, &output);
} else {
export.push_test(&input, &output);
}
color_pair_strings.push(format!("{}{}", color0, color1));
}
let transformation_name: &str = match transformation {
TwoPixelSpecialTransformation::LandscapeOrientation => "land_rotrev",
TwoPixelSpecialTransformation::PortraitOrientation => "port_rotrev",
TwoPixelSpecialTransformation::MixedOrientation => "landport_rotrev",
};
let color_pair_strings_joined: String = color_pair_strings.join("_");
let filename: String = format!("{}_{}.json", transformation_name, color_pair_strings_joined);
let dataset_item: DatasetItem = DatasetItem {
json: export.to_string()?,
dirname: transformation_name.to_string(),
filename,
};
Ok(dataset_item)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_10000_five_unique_color_pairs() {
let actual: Vec<(u8, u8)> = GenerateDataset::five_unique_color_pairs(&mut StdRng::seed_from_u64(0));
assert_eq!(actual, vec![(5, 2), (9, 1), (6, 3), (4, 0), (7, 8)]);
}
#[test]
fn test_20000_alternate() {
assert_eq!(GenerateDataset::alternate(2, vec![0, 1]), vec![0, 1]);
assert_eq!(GenerateDataset::alternate(3, vec![0, 1]), vec![0, 1, 0]);
assert_eq!(GenerateDataset::alternate(4, vec![0, 1]), vec![0, 1, 0, 1]);
assert_eq!(GenerateDataset::alternate(3, vec![4, 5]), vec![4, 5, 4]);
assert_eq!(GenerateDataset::alternate(6, vec![1, 2, 3]), vec![1, 2, 3, 1, 2, 3]);
}
#[test]
fn test_30000_round_robin_shuffled() {
let a: Vec<u8> = vec![0, 1];
let b: Vec<u8> = vec![5, 6, 7];
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(0), 5, &a), vec![1, 1, 0, 0, 0]);
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(0), 6, &a), vec![1, 1, 0, 0, 0, 1]);
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(0), 7, &a), vec![1, 0, 0, 0, 1, 0, 1]);
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(1), 5, &a), vec![0, 0, 1, 1, 0]);
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(1), 6, &a), vec![0, 0, 1, 1, 0, 1]);
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(1), 7, &a), vec![0, 1, 0, 1, 0, 0, 1]);
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(1), 8, &a), vec![0, 0, 1, 0, 1, 0, 1, 1]);
assert_eq!(GenerateDataset::round_robin_shuffled(&mut StdRng::seed_from_u64(0), 3, &b), vec![7, 5, 6]);
}
#[allow(dead_code)]
// #[test]
fn test_40000_generate() {
// Arrange
let mut generate_dataset = GenerateDataset::new();
// Act
// generate_dataset.populate(60, true).expect("ok");
generate_dataset.populate(1200, false).expect("ok");
generate_dataset.save(&PathBuf::from("/Users/neoneye/Downloads/output")).expect("ok");
// Assert
}
}
|