File size: 17,885 Bytes
d5bfab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//! Cellular automaton - dataset for curriculum learning with increasing complexity.
//! 
//! This dataset is available here:
//! https://huggingface.co/datasets/neoneye/gameoflife-v1
//! 
//! Future experiments:
//! Use different symbols than only . and *.
//! Use different separator characters. Currently no separator is used.
//! Detect of what symbols are being used, so it writes that: dead=., alive=*, separator=none.
//! Do more prediction steps. Currently only 1 or 2 steps are being used.
//! 
//! Game of life: check for oscillators
//! Game of life: recognize shapes.
use super::{CellularAutomaton, cellular_automaton::rule};
use super::{Image, ImageSize, RandomImage, ImageMaskCount, ImageHistogram};
use super::HtmlLog;
use bloomfilter::*;
use rand::rngs::StdRng;
use rand::SeedableRng;
use rand::seq::SliceRandom;
use serde::Serialize;
use std::io::Write;

#[allow(dead_code)]
#[derive(Debug, Clone, Copy, Serialize)]
enum Curriculum {
    // Easy
    StepOneSizeSmall,
    StepOneSizeSmallMedium,
    StepOneSizeSmallMediumBig,

    // Hard
    StepTwoSizeSmall,
    StepOneTwoSizeSmall,
    StepTwoSizeSmallMedium,
    StepOneTwoSizeSmallMedium,
    StepTwoSizeSmallMediumBig,
    StepOneTwoSizeSmallMediumBig,
}

#[allow(dead_code)]
#[derive(Debug, Serialize)]
struct DatasetItem {
    curriculum: Curriculum,
    text: String,
}

#[allow(dead_code)]
#[derive(Debug, Clone, Copy)]
enum Strategy {
    DoNothing,
    ServiettesOneStep,
    ServiettesTwoSteps,
    HighLifeOneStep,
    HighLifeTwoSteps,
}

struct GenerateDataset {
    // bloom is for preventing duplicates
    bloom: Bloom<Image>,
    dataset_items: Vec<DatasetItem>,
}

impl GenerateDataset {
    #[allow(dead_code)]
    fn new() -> Self {
        let bloom_items_count = 100000;
        let false_positive_rate = 0.01;
        Self {
            bloom: Bloom::<Image>::new_for_fp_rate(bloom_items_count, false_positive_rate),
            dataset_items: vec!(),
        }
    }

    #[allow(dead_code)]
    fn populate(&mut self, curriculum: Curriculum, number_of_items: u32, print_to_htmllog: bool) -> anyhow::Result<()> {
        // Prevent too many DatasetItem's with both outputs are all empty
        let max_items_where_both_outputs_all_empty: usize = ((number_of_items as usize) * 5) / 100;

        let step_counts: Vec<u8> = match curriculum {
            Curriculum::StepOneSizeSmall => vec![1],
            Curriculum::StepOneSizeSmallMedium => vec![1],
            Curriculum::StepOneSizeSmallMediumBig => vec![1],
            Curriculum::StepTwoSizeSmall => vec![2],
            Curriculum::StepOneTwoSizeSmall => vec![1, 2],
            Curriculum::StepTwoSizeSmallMedium => vec![2],
            Curriculum::StepOneTwoSizeSmallMedium => vec![1, 2],
            Curriculum::StepTwoSizeSmallMediumBig => vec![2],
            Curriculum::StepOneTwoSizeSmallMediumBig => vec![1, 2],
        };

        let random_seed: u64 = match curriculum {
            Curriculum::StepOneSizeSmall => 0,
            Curriculum::StepOneSizeSmallMedium => 1000000,
            Curriculum::StepOneSizeSmallMediumBig => 2000000,
            Curriculum::StepTwoSizeSmall => 3000000,
            Curriculum::StepOneTwoSizeSmall => 4000000,
            Curriculum::StepTwoSizeSmallMedium => 5000000,
            Curriculum::StepOneTwoSizeSmallMedium => 6000000,
            Curriculum::StepTwoSizeSmallMediumBig => 7000000,
            Curriculum::StepOneTwoSizeSmallMediumBig => 8000000,
        };

        let sizes: Vec<u8> = match curriculum {
            Curriculum::StepOneSizeSmall => vec![3, 4, 5, 6],
            Curriculum::StepOneSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10],
            Curriculum::StepOneSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
            Curriculum::StepTwoSizeSmall => vec![3, 4, 5, 6],
            Curriculum::StepOneTwoSizeSmall => vec![3, 4, 5, 6],
            Curriculum::StepTwoSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10],
            Curriculum::StepOneTwoSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10],
            Curriculum::StepTwoSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
            Curriculum::StepOneTwoSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
        };

        let temperatures: [u8; 9] = [
            10, 20, 30, 40, 50, 60, 70, 80, 90
        ];
        let strategies: [Strategy; 5] = [
            Strategy::DoNothing,
            Strategy::ServiettesOneStep,
            Strategy::ServiettesTwoSteps,
            Strategy::HighLifeOneStep,
            Strategy::HighLifeTwoSteps,
        ];

        let mut count_input_all_empty: usize = 0;
        let mut count_input_all_alive: usize = 0;
        let mut count_input_one_cell_empty: usize = 0;
        let mut count_input_one_cell_alive: usize = 0;
        let mut count_both_outputs_all_empty: usize = 0;

        let upper_bound: u64 = (number_of_items * 4) as u64;
        let mut number_of_items_created: u32 = 0;
        for i in 0..upper_bound {
            if number_of_items_created >= number_of_items {
                break;
            }
            let mut rng = StdRng::seed_from_u64(random_seed + i);
            let step_count: u8 = *step_counts.choose(&mut rng).unwrap();
            let width: u8 = *sizes.choose(&mut rng).unwrap();
            let height: u8 = *sizes.choose(&mut rng).unwrap();
            let temperature: u8 = *temperatures.choose(&mut rng).unwrap();
            let strategy: Strategy = *strategies.choose(&mut rng).unwrap();

            let size = ImageSize::new(width, height);
            let mut input: Image = RandomImage::two_colors(&mut rng, size, 0, 1, temperature)?;

            // Mutate the input image, to get different distributions
            match strategy {
                Strategy::DoNothing => {},
                Strategy::HighLifeOneStep => {
                    let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::HighLife>::with_image(&input, None);
                    ca.step(1);
                    input = ca.image().clone();
                },
                Strategy::HighLifeTwoSteps => {
                    let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::HighLife>::with_image(&input, None);
                    ca.step(2);
                    input = ca.image().clone();
                },
                Strategy::ServiettesOneStep => {
                    let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::Serviettes>::with_image(&input, None);
                    ca.step(1);
                    input = ca.image().clone();
                },
                Strategy::ServiettesTwoSteps => {
                    let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::Serviettes>::with_image(&input, None);
                    ca.step(2);
                    input = ca.image().clone();
                },
            }

            let (input_count0, input_count1, _count_other) = input.mask_count();
            let is_input_all_empty: bool = input_count1 == 0;
            let is_input_all_alive: bool = input_count0 == 0;
            let is_input_one_cell_empty: bool = input_count0 == 1;
            let is_input_one_cell_alive: bool = input_count1 == 1;

            if is_input_all_empty {
                count_input_all_empty += 1;
                if count_input_all_empty > 3 {
                    debug!("ignoring input with all empty");
                    continue;
                }
            }
            if is_input_all_alive {
                count_input_all_alive += 1;
                if count_input_all_alive > 3 {
                    debug!("ignoring input with all alive");
                    continue;
                }
            }
            if is_input_one_cell_empty {
                count_input_one_cell_empty += 1;
                if count_input_one_cell_empty > 3 {
                    debug!("ignoring input with one cell empty");
                    continue;
                }
            }
            if is_input_one_cell_alive {
                count_input_one_cell_alive += 1;
                if count_input_one_cell_alive > 3 {
                    debug!("ignoring input with one cell alive");
                    continue;
                }
            }
            
            if self.bloom.check(&input) {
                debug!("skipping duplicate");
                continue;
            }
            self.bloom.set(&input);
            
            let mut ca_nowrap: CellularAutomaton<_> = CellularAutomaton::<rule::GameOfLife>::with_image(&input, Some(0));
            ca_nowrap.step(step_count);
            let output_without_wrap: Image = ca_nowrap.image().clone();

            let mut ca_wrap: CellularAutomaton<_> = CellularAutomaton::<rule::GameOfLife>::with_image(&input, None);
            ca_wrap.step(step_count);
            let output_with_wrap: Image = ca_wrap.image().clone();

            let same_output_for_wrap_and_nowrap: bool = output_without_wrap == output_with_wrap;

            if same_output_for_wrap_and_nowrap {
                if output_without_wrap.mask_count_nonzero() == 0 {
                    count_both_outputs_all_empty += 1;
                    if count_both_outputs_all_empty > max_items_where_both_outputs_all_empty {
                        debug!("ignoring dataset item where both outputs are all empty");
                        continue;
                    }
                }
            }

            let mut markdown = String::new();
            markdown.push_str("# Conway's Game of Life\n\n");
            if step_count == 1 {
                markdown.push_str("Perform 1 step.\n\n");
            } else {
                markdown.push_str(&format!("Perform {} steps.\n\n", step_count));
            }
            markdown.push_str("## Input\n\n");
            markdown.push_str(&Self::image_to_markdown_fenced_code_block(&input));
            markdown.push_str("\n\n");
            Self::caption_for_input_output_image(&mut markdown, &input);
            markdown.push_str("\n");
            markdown.push_str("## Output without wrap\n\n");
            markdown.push_str(&Self::image_to_markdown_fenced_code_block(&output_without_wrap));
            markdown.push_str("\n\n");
            Self::caption_for_input_output_image(&mut markdown, &output_without_wrap);
            Self::caption_for_output_compared_to_input(&mut markdown, &output_without_wrap, &input, step_count);
            markdown.push_str("\n");
            markdown.push_str("## Output with wrap\n\n");
            markdown.push_str(&Self::image_to_markdown_fenced_code_block(&output_with_wrap));
            markdown.push_str("\n\n");
            Self::caption_for_input_output_image(&mut markdown, &output_with_wrap);
            Self::caption_for_output_compared_to_input(&mut markdown, &output_with_wrap, &input, step_count);
            markdown.push_str("\n");
            markdown.push_str("## Status\n\n");
            if same_output_for_wrap_and_nowrap {
                markdown.push_str("The outputs are identical.");
            } else {
                markdown.push_str("The outputs are different.");
            }

            if print_to_htmllog {
                let compare_images: Vec<Image> = vec![
                    input.clone(),
                    output_without_wrap.clone(),
                    output_with_wrap.clone(),
                ];
                // if same_output_for_wrap_and_nowrap {
                //     HtmlLog::text("wrap is identical to nowrap");
                // } else {
                //     HtmlLog::text("wrap is different than nowrap");
                // }
                HtmlLog::text(markdown.clone());
                HtmlLog::compare_images(compare_images);
            }

            let dataset_item = DatasetItem {
                curriculum,
                text: markdown,
            };
            self.dataset_items.push(dataset_item);
            number_of_items_created += 1;
        }

        debug!("count_both_outputs_all_empty: {}", count_both_outputs_all_empty);

        Ok(())
    }

    fn caption_for_input_output_image(markdown: &mut String, image: &Image) {
        let (count_empty, count_alive, _count_other) = image.mask_count();
        if count_alive == 0 {
            markdown.push_str("All cells are empty.\n");
        }
        if count_empty == 0 {
            markdown.push_str("All cells are alive.\n");
        }
        if count_alive == 1 {
            markdown.push_str("Only one cell is alive.\n");
        }
        if count_empty == 1 {
            markdown.push_str("Only one cell is empty.\n");
        }

        if count_alive > 0 && count_empty > 0 {
            if image.is_repeated_row().unwrap_or(false) {
                markdown.push_str("The rows are identical.\n");
            }
            if image.is_repeated_column().unwrap_or(false) {
                markdown.push_str("The columns are identical.\n");
            }
        }
    }

    fn caption_for_output_compared_to_input(markdown: &mut String, output: &Image, input: &Image, step_count: u8) {
        if output == input {
            markdown.push_str("This output is identical to the input.\n");
            let (count0, count1, _count_other) = input.mask_count();
            if count0 > 0 && count1 > 0 && step_count == 1 {
                markdown.push_str("Still life.\n");
            }
        } else {
            markdown.push_str("This output is different than the input.\n");
        }
    }

    fn image_to_markdown_fenced_code_block(image: &Image) -> String {
        format!("```\n{}\n```", GenerateDataset::image_to_string(image))
    }

    fn image_to_string(image: &Image) -> String {
        let mut result = String::new();
        for y in 0..image.height() {
            if y > 0 {
                result.push('\n');
            }
            for x in 0..image.width() {
                let value: u8 = image.get(x as i32, y as i32).unwrap_or(0);
                let character: char = match value {
                    0 => '.',
                    1 => '*',
                    _ => '?',
                };
                result.push(character);
            }
        }
        result
    }

    fn dataset_to_jsonl(dataset_items: &Vec<DatasetItem>) -> anyhow::Result<String> {
        let mut jsonl_rows = Vec::<String>::new();
        for dataset_item in dataset_items {
            let jsonl_row: String = serde_json::to_string(dataset_item)?;
            jsonl_rows.push(jsonl_row);
        }
        let jsonl_data: String = jsonl_rows.join("\n");
        Ok(jsonl_data)
    }

    #[allow(dead_code)]
    fn shuffle(&mut self) {
        let mut rng = StdRng::seed_from_u64(0);
        self.dataset_items.shuffle(&mut rng);
    }

    #[allow(dead_code)]
    fn save(&self, path: &std::path::Path) -> anyhow::Result<()> {
        let s: String = Self::dataset_to_jsonl(&self.dataset_items)?;
        println!("dataset number of rows: {}", self.dataset_items.len());
        println!("dataset jsonl bytes: {}", s.len());

        let mut file = std::fs::File::create(path)?;
        file.write_all(s.as_bytes())?;
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::arc::ImageTryCreate;
    use std::path::PathBuf;

    #[test]
    fn test_10000_image_to_string() {
        // Arrange
        let pixels: Vec<u8> = vec![
            1, 0, 0,
            0, 1, 1,
            1, 1, 255,
        ];
        let input: Image = Image::try_create(3, 3, pixels).expect("image");

        // Act
        let actual: String = GenerateDataset::image_to_string(&input);
        
        // Assert
        assert_eq!(actual, "*..\n.**\n**?");
    }

    #[allow(dead_code)]
    // #[test]
    fn test_20000_generate_and_save() {
        let path: PathBuf = PathBuf::from("/Users/neoneye/Downloads/gameoflife.jsonl");
        let mut generator = GenerateDataset::new();
        let number_of_items: u32 = 4700;
        generator.populate(Curriculum::StepOneSizeSmall, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepOneSizeSmallMedium, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepOneSizeSmallMediumBig, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepTwoSizeSmall, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepOneTwoSizeSmall, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepTwoSizeSmallMedium, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepOneTwoSizeSmallMedium, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepTwoSizeSmallMediumBig, number_of_items, false).expect("ok");
        generator.populate(Curriculum::StepOneTwoSizeSmallMediumBig, number_of_items, false).expect("ok");
        generator.shuffle();
        generator.save(&path).expect("ok");
    }

    #[allow(dead_code)]
    // #[test]
    fn test_20001_do_something() {
        for i in 0..20u64 {
            let size = ImageSize::new(10, 8);
            let step0: Image = RandomImage::two_colors(&mut StdRng::seed_from_u64(i), size, 0, 1, 35).expect("ok");
            let step1: Image = RandomImage::draw_dots(&mut StdRng::seed_from_u64(i+5), &step0, 2, 5).expect("ok");
            let step2: Image = RandomImage::draw_dots(&mut StdRng::seed_from_u64(i+8), &step1, 3, 5).expect("ok");
            let mut images = Vec::<Image>::new();
            images.push(step2.clone());
            let mut ca: CellularAutomaton<_> = CellularAutomaton::<rule::GameOfLifeExtra>::with_image(&step0, None);
            for _ in 0..4 {
                ca.step_once();
                images.push(ca.image().clone());
            }
            HtmlLog::compare_images(images);
        }
    }
}