File size: 17,370 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
use loda_rust_core::execute::RegisterType;
use loda_rust_core::parser::{Instruction, InstructionId, InstructionParameter, ParameterType};
use loda_rust_core::parser::ParsedProgram;
use super::GenomeMutateContext;
use rand::Rng;
use rand::seq::SliceRandom;
use std::fmt;
// Ideas for more categories:
// Pick a recently created program.
// Pick a recently modified program.
// Pick a program that has not been modified for a long time.
// Increment the program_id, to get to the next available program_id.
// Pick a program with a similar name.
// Pick a program that executes fast.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Copy)]
pub enum MutateEvalSequenceCategory {
WeightedByPopularity,
MostPopular,
MediumPopular,
LeastPopular,
Recent,
ProgramThatUsesIndirectMemoryAccess,
}
#[derive(Clone, Debug)]
pub struct GenomeItem {
/// The `Genome` avoids modifying `GenomeItem`s that have `mutation_locked=true`.
/// this is when a program follows a rigid pattern,
/// where narrow areas in the program are to be mutated.
mutation_locked: bool,
enabled: bool,
instruction_id: InstructionId,
target_type: RegisterType,
target_value: i32,
source_type: ParameterType,
source_value: i32,
}
impl GenomeItem {
pub fn new(instruction_id: InstructionId, target_type: RegisterType, target_value: i32, source_type: ParameterType, source_value: i32) -> Self {
Self {
mutation_locked: false,
enabled: true,
instruction_id: instruction_id,
target_type: target_type,
target_value: target_value,
source_type: source_type,
source_value: source_value,
}
}
pub fn contains_indirect_memory_access(&self) -> bool {
if !self.enabled {
return false;
}
if self.target_type == RegisterType::Indirect {
return true;
}
if self.source_type == ParameterType::Indirect {
return true;
}
false
}
pub fn is_mutation_locked(&self) -> bool {
self.mutation_locked
}
#[allow(dead_code)]
pub fn set_mutation_locked(&mut self, mutation_locked: bool) {
self.mutation_locked = mutation_locked;
}
pub fn is_enabled(&self) -> bool {
self.enabled
}
#[allow(dead_code)]
pub fn set_enabled(&mut self, enabled: bool) {
self.enabled = enabled;
}
pub fn instruction_id(&self) -> InstructionId {
self.instruction_id
}
pub fn target_type(&self) -> RegisterType {
self.target_type
}
pub fn set_target_type(&mut self, target_type: RegisterType) {
self.target_type = target_type;
}
#[allow(dead_code)]
pub fn target_value(&self) -> i32 {
self.target_value
}
pub fn set_target_value(&mut self, value: i32) -> bool {
if self.target_value() == value {
return false;
}
if value < 0 {
return false;
}
self.target_value = value;
return true;
}
pub fn source_type(&self) -> ParameterType {
self.source_type
}
pub fn set_source_type(&mut self, source_type: ParameterType) {
self.source_type = source_type;
}
pub fn source_value(&self) -> i32 {
self.source_value
}
pub fn set_source_value(&mut self, value: i32) {
self.source_value = value;
}
#[allow(dead_code)]
pub fn mutate_trigger_division_by_zero(&mut self) {
self.instruction_id = InstructionId::Divide;
self.source_type = ParameterType::Constant;
self.source_value = 0;
}
pub fn set_instruction(&mut self, new_instruction_id: InstructionId) -> bool {
// Is the new instruction identical to the original instruction.
if self.instruction_id == new_instruction_id {
return false;
}
// Abort if the current instruction is special
match self.instruction_id {
InstructionId::EvalSequence |
InstructionId::LoopBegin |
InstructionId::LoopEnd |
InstructionId::UnofficialFunction { .. } |
InstructionId::UnofficialLoopBeginSubtract => {
return false;
},
_ => {}
}
// Abort if the new instruction is special
match new_instruction_id {
InstructionId::EvalSequence |
InstructionId::LoopBegin |
InstructionId::LoopEnd |
InstructionId::UnofficialFunction { .. } |
InstructionId::UnofficialLoopBeginSubtract => {
return false;
},
_ => {}
}
self.instruction_id = new_instruction_id;
true
}
pub fn mutate_swap_source_target_value(&mut self) -> bool {
if self.target_value == self.source_value {
// No mutation happened
return false;
}
let tmp = self.source_value;
self.source_value = self.target_value;
self.target_value = tmp;
true
}
/// Mutate the `seq` instruction, so it invokes the next program in the list.
///
/// If it reaches the end, then it picks the first program from the list.
#[allow(dead_code)]
pub fn mutate_pick_next_program<R: Rng + ?Sized>(&mut self, rng: &mut R, context: &GenomeMutateContext) -> bool {
let is_seq = self.instruction_id == InstructionId::EvalSequence;
if !is_seq {
// Only a `seq` instruction can be modified.
return false;
}
let available_program_ids: &Vec<u32> = context.available_program_ids();
if available_program_ids.is_empty() {
// There are no program_ids to pick from.
return false;
}
let current_program_id: u32 = self.source_value().abs() as u32;
let mut iter = available_program_ids.iter();
let index: Option<usize> = iter.position(|&program_id| program_id == current_program_id);
// If the program wasn't found among the available programs,
// then pick a random program.
if index.is_none() {
let new_program_id: &u32 = available_program_ids.choose(rng).unwrap();
self.source_value = *new_program_id as i32;
return true;
}
// If the program was found among the available programs,
// then pick the next available program.
if let Some(new_program_id) = iter.next() {
self.source_value = *new_program_id as i32;
return true;
}
// Wraparound when reaching the end of the available programs.
match available_program_ids.first() {
Some(new_program_id) => {
self.source_value = *new_program_id as i32;
return true;
},
None => {
// If everything fails, fallback to fibonacci, A000045
self.source_value = 45;
return false;
}
}
}
/// Mutate the `seq` instruction, so it invokes a random program.
pub fn mutate_instruction_seq<R: Rng + ?Sized>(&mut self, rng: &mut R, context: &GenomeMutateContext, category: MutateEvalSequenceCategory) -> bool {
let is_seq = self.instruction_id == InstructionId::EvalSequence;
if !is_seq {
// Only a `seq` instruction can be modified.
return false;
}
let chosen_program_id: Option<u32> = match category {
MutateEvalSequenceCategory::WeightedByPopularity => context.choose_weighted_by_popularity(rng),
MutateEvalSequenceCategory::MostPopular => context.choose_most_popular(rng),
MutateEvalSequenceCategory::MediumPopular => context.choose_medium_popular(rng),
MutateEvalSequenceCategory::LeastPopular => context.choose_least_popular(rng),
MutateEvalSequenceCategory::Recent => context.choose_recent_program(rng),
MutateEvalSequenceCategory::ProgramThatUsesIndirectMemoryAccess => context.choose_indirect_memory_access_program_id(rng),
};
let new_program_id: u32 = match chosen_program_id {
Some(value) => value,
None => {
// The PopularProgramContainer is empty in some way.
return false;
}
};
let available_program_ids: &Vec<u32> = context.available_program_ids();
if !available_program_ids.contains(&new_program_id) {
// Picked a program that isn't among the available programs.
// This happens when the csv files are outdated with the latest LODA repository.
return false;
}
let current_source_value: i32 = self.source_value();
if current_source_value >= 0 {
let is_same = (current_source_value as u32) == new_program_id;
if is_same {
// Failed to pick a different program
return false;
}
}
// Successfully picked a new program
self.source_value = new_program_id as i32;
true
}
pub fn to_line_string(&self) -> String {
if !self.enabled {
return ";".to_string();
}
if self.instruction_id == InstructionId::LoopEnd {
return self.instruction_id.to_string();
}
let parameter_vec: Vec<InstructionParameter> = self.to_parameter_vec();
let strings: Vec<String> = parameter_vec.iter().map(|item| {
item.to_string()
}).collect();
let parameter_strings: String = strings.join(",");
format!("{} {}", self.instruction_id, parameter_strings)
}
pub fn to_parameter_vec(&self) -> Vec<InstructionParameter> {
match &self.instruction_id {
InstructionId::LoopBegin => {
let parameter0: InstructionParameter;
match self.target_type {
RegisterType::Direct => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Direct,
parameter_value: (self.target_value.abs()) as i64,
};
},
RegisterType::Indirect => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Indirect,
parameter_value: (self.target_value.abs()) as i64,
};
},
}
if self.source_type == ParameterType::Constant && self.source_value == 1 {
return vec![parameter0];
}
let parameter1 = InstructionParameter {
parameter_type: self.source_type.clone(),
parameter_value: (self.source_value.abs()) as i64,
};
return vec![parameter0, parameter1];
},
InstructionId::UnofficialLoopBeginSubtract => {
let parameter0: InstructionParameter;
match self.target_type {
RegisterType::Direct => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Direct,
parameter_value: (self.target_value.abs()) as i64,
};
},
RegisterType::Indirect => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Indirect,
parameter_value: (self.target_value.abs()) as i64,
};
},
}
return vec![parameter0];
},
InstructionId::LoopEnd => {
return vec!();
},
InstructionId::EvalSequence => {
let parameter0: InstructionParameter;
match self.target_type {
RegisterType::Direct => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Direct,
parameter_value: (self.target_value.abs()) as i64,
};
},
RegisterType::Indirect => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Indirect,
parameter_value: (self.target_value.abs()) as i64,
};
},
}
let parameter1 = InstructionParameter {
parameter_type: ParameterType::Constant,
parameter_value: (self.source_value.abs()) as i64,
};
return vec![parameter0, parameter1];
},
_ => {
let parameter0: InstructionParameter;
match self.target_type {
RegisterType::Direct => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Direct,
parameter_value: (self.target_value.abs()) as i64,
};
},
RegisterType::Indirect => {
parameter0 = InstructionParameter {
parameter_type: ParameterType::Indirect,
parameter_value: (self.target_value.abs()) as i64,
};
},
}
let parameter1: InstructionParameter;
match self.source_type {
ParameterType::Constant => {
parameter1 = InstructionParameter {
parameter_type: ParameterType::Constant,
parameter_value: self.source_value as i64,
};
},
ParameterType::Direct => {
parameter1 = InstructionParameter {
parameter_type: ParameterType::Direct,
parameter_value: (self.source_value.abs()) as i64,
};
},
ParameterType::Indirect => {
parameter1 = InstructionParameter {
parameter_type: ParameterType::Indirect,
parameter_value: (self.source_value.abs()) as i64,
};
},
}
return vec![parameter0, parameter1];
}
}
}
}
impl fmt::Display for GenomeItem {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let line_prefix: &str;
if self.enabled {
line_prefix = "";
} else {
line_prefix = "; ";
}
write!(f, "{}{} {}{},{}{}",
line_prefix,
self.instruction_id,
self.target_type.prefix(),
self.target_value,
self.source_type.prefix(),
self.source_value
)
}
}
pub trait ToGenomeItem {
fn to_genome_item(&self) -> Option<GenomeItem>;
}
impl ToGenomeItem for Instruction {
fn to_genome_item(&self) -> Option<GenomeItem> {
let mut target_type = RegisterType::Direct;
let mut target_value: i32 = 0;
let mut source_type: ParameterType = ParameterType::Constant;
let mut source_value: i32 = 0;
if self.instruction_id == InstructionId::LoopBegin {
// The "lpb" instruction, when there is no source parameter, then its default value is 1.
source_value = 1;
}
for (index, parameter) in self.parameter_vec.iter().enumerate() {
if index == 0 {
target_value = parameter.parameter_value as i32;
if parameter.parameter_type == ParameterType::Indirect {
target_type = RegisterType::Indirect;
} else {
target_type = RegisterType::Direct;
}
}
if index == 1 {
source_value = parameter.parameter_value as i32;
source_type = parameter.parameter_type.clone();
}
}
let genome_item = GenomeItem::new(
self.instruction_id,
target_type,
target_value,
source_type,
source_value,
);
Some(genome_item)
}
}
pub trait ToGenomeItemVec {
fn to_genome_item_vec(&self) -> Vec<GenomeItem>;
}
impl ToGenomeItemVec for ParsedProgram {
fn to_genome_item_vec(&self) -> Vec<GenomeItem> {
let mut genome_vec = Vec::<GenomeItem>::with_capacity(self.instruction_vec.len());
for instruction in &self.instruction_vec {
let genome_item: GenomeItem = match instruction.to_genome_item() {
Some(value) => value,
None => {
continue;
}
};
genome_vec.push(genome_item);
}
genome_vec
}
}
|