File size: 6,761 Bytes
d5bfab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
use std::cmp;

#[derive(Debug, Eq, Hash, PartialEq)]
pub enum PerformanceClassifierResult {
    ErrorTooShortInputVector,
    ErrorDifferentInputVectorLengths,
    Identical,
    NewProgramIsAlwaysFaster,
    NewProgramIsEqualOrFaster,
    NewProgramIsAlwaysFasterWhenSkippingTheFirstSlice,
    RejectNewProgram,
}

pub struct PerformanceClassifier {
    number_of_items_in_first_slice: usize,
}

impl PerformanceClassifier {
    pub fn new(number_of_items_in_first_slice: usize) -> Self {
        assert!(number_of_items_in_first_slice > 0);
        Self {
            number_of_items_in_first_slice: number_of_items_in_first_slice
        }
    }

    pub fn analyze(&self, steps0: &Vec<u64>, steps1: &Vec<u64>) -> PerformanceClassifierResult {
        if steps0.len() != steps1.len() {
            return PerformanceClassifierResult::ErrorDifferentInputVectorLengths;
        }
        let len = cmp::min(steps0.len(), steps1.len());
        if len <= self.number_of_items_in_first_slice {
            return PerformanceClassifierResult::ErrorTooShortInputVector;
        }
        let first_slice0: &[u64] = &steps0[..self.number_of_items_in_first_slice];
        let first_slice1: &[u64] = &steps1[..self.number_of_items_in_first_slice];
        assert!(first_slice0.len() == self.number_of_items_in_first_slice);
        assert!(first_slice1.len() == self.number_of_items_in_first_slice);

        let last_slice0: &[u64] = &steps0[self.number_of_items_in_first_slice..];
        let last_slice1: &[u64] = &steps1[self.number_of_items_in_first_slice..];
        assert!(first_slice0.len() + last_slice0.len() == steps0.len());
        assert!(first_slice1.len() + last_slice1.len() == steps1.len());

        let (first_count_program0, first_count_same, first_count_program1) = Self::histogram(first_slice0, first_slice1);
        let (last_count_program0, last_count_same, last_count_program1) = Self::histogram(last_slice0, last_slice1);

        let count_program0 = first_count_program0 + last_count_program0;
        let count_same = first_count_same + last_count_same;
        let count_program1 = first_count_program1 + last_count_program1;

        if count_program0 == 0 && count_same > 0 && count_program1 == 0 {
            return PerformanceClassifierResult::Identical;
        }
        if count_program0 > 0 && count_same == 0 && count_program1 == 0  {
            return PerformanceClassifierResult::NewProgramIsAlwaysFaster;
        }
        if count_program0 > 0 && count_same > 0 && count_program1 == 0  {
            return PerformanceClassifierResult::NewProgramIsEqualOrFaster;
        }
        if first_count_program1 > 0 &&
            last_count_program0 > 0 && last_count_same == 0 && last_count_program1 == 0 {
            return PerformanceClassifierResult::NewProgramIsAlwaysFasterWhenSkippingTheFirstSlice;
        }
        PerformanceClassifierResult::RejectNewProgram
    }

    fn histogram(steps0: &[u64], steps1: &[u64]) -> (usize, usize, usize) {
        let mut count_same: usize = 0;
        let mut count_less_than: usize = 0;
        let mut count_greater_than: usize = 0;
        let len = cmp::min(steps0.len(), steps1.len());
        for i in 0..len {
            let steps0: u64 = steps0[i];
            let steps1: u64 = steps1[i];
            if steps0 < steps1 {
                count_less_than += 1;
                continue;
            }
            if steps0 > steps1 {
                count_greater_than += 1;
                continue;
            }
            count_same += 1;
        }
        (count_less_than, count_same, count_greater_than)
    }    
}

#[cfg(test)]
mod tests {
    use super::*;

    fn histogram(steps0: Vec<u64>, steps1: Vec<u64>) -> String {
        let (a, b, c) = PerformanceClassifier::histogram(&steps0, &steps1);
        format!("{} {} {}", a, b, c)
    }
    
    #[test]
    fn test_10000_histogram() {
        assert_eq!(histogram(vec![1, 1], vec![2, 2]), "2 0 0");
        assert_eq!(histogram(vec![1, 1], vec![1, 1]), "0 2 0");
        assert_eq!(histogram(vec![2, 2], vec![1, 1]), "0 0 2");
        assert_eq!(histogram(vec![1, 1, 2, 1], vec![2, 2, 2, 2]), "3 1 0");
        assert_eq!(histogram(vec![2, 2, 1, 2], vec![1, 1, 1, 1]), "0 1 3");
        assert_eq!(histogram(vec![5, 1, 5, 1], vec![2, 4, 2, 4]), "2 0 2");
    }
    
    #[test]
    fn test_20000_analyze_error_different_lengths() {
        let steps0: Vec<u64> = vec![5, 5, 5, 5, 5];
        let steps1: Vec<u64> = vec![5, 5, 5, 5, 5, 666];
        let pc = PerformanceClassifier::new(2);
        let result = pc.analyze(&steps0, &steps1);
        assert_eq!(result, PerformanceClassifierResult::ErrorDifferentInputVectorLengths);
    }
    
    #[test]
    fn test_20001_analyze_error_too_short() {
        let steps: Vec<u64> = vec![5, 5, 5, 5, 5];
        let pc = PerformanceClassifier::new(10);
        let result = pc.analyze(&steps, &steps);
        assert_eq!(result, PerformanceClassifierResult::ErrorTooShortInputVector);
    }
    
    #[test]
    fn test_30000_analyze_identical() {
        let steps: Vec<u64> = vec![5, 5, 5, 5, 5];
        let pc = PerformanceClassifier::new(2);
        let result = pc.analyze(&steps, &steps);
        assert_eq!(result, PerformanceClassifierResult::Identical);
    }

    #[test]
    fn test_30001_analyze_is_always_faster() {
        let steps0: Vec<u64> = vec![4, 4, 3, 4, 2];
        let steps1: Vec<u64> = vec![5, 5, 5, 5, 5];
        let pc = PerformanceClassifier::new(3);
        let result = pc.analyze(&steps0, &steps1);
        assert_eq!(result, PerformanceClassifierResult::NewProgramIsAlwaysFaster);
    }

    #[test]
    fn test_30002_analyze_new_program_is_equal_or_faster() {
        let steps0: Vec<u64> = vec![4, 5, 3, 5, 2];
        let steps1: Vec<u64> = vec![5, 5, 5, 5, 5];
        let pc = PerformanceClassifier::new(3);
        let result = pc.analyze(&steps0, &steps1);
        assert_eq!(result, PerformanceClassifierResult::NewProgramIsEqualOrFaster);
    }

    #[test]
    fn test_30003_analyze_new_program_is_equal_or_faster() {
        let steps0: Vec<u64> = vec![40, 40, 40, 5, 5, 5];
        let steps1: Vec<u64> = vec![5, 5, 5, 40, 40, 40];
        let pc = PerformanceClassifier::new(3);
        let result = pc.analyze(&steps0, &steps1);
        assert_eq!(result, PerformanceClassifierResult::NewProgramIsAlwaysFasterWhenSkippingTheFirstSlice);
    }

    #[test]
    fn test_40000_analyze_reject_new_program() {
        let steps0: Vec<u64> = vec![40, 41, 43, 46, 50, 60];
        let steps1: Vec<u64> = vec![5, 5, 5, 5, 5, 5];
        let pc = PerformanceClassifier::new(3);
        let result = pc.analyze(&steps0, &steps1);
        assert_eq!(result, PerformanceClassifierResult::RejectNewProgram);
    }
}