File size: 9,276 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
use std::error::Error;
use std::fmt;
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::path::Path;
use serde::Deserialize;
use rand::Rng;
use rand::seq::SliceRandom;
/// The file `program_popularity.csv`, has a column `popularity`
/// contain values in the range 0 to 9.
///
/// The value `0` is for the unpopular programs, that no other programs depend on.
///
/// The value `1` is the little-used programs, where 1 or more programs depend on it.
///
/// The values `2..8` are for the medium-used programs.
///
/// The value `9` is the most-used programs, that lots of other programs depends on.
const NUMBER_OF_CLUSTERS: u8 = 10;
/// Some programs are more useful than other programs.
///
/// This is a data structure for picking a popular program.
///
/// Without this data structure, it would be terrible time consuming
/// making a weighted choice among the programs.
///
/// Examples of popular programs are: fibonacci, primes, factorial, sqrt(2).
/// A program is popular when lots of other programs depend on it.
/// The popular programs are assigned `cluster_id` 9.
///
/// However the majority of programs are the unpopular programs.
/// These are rarely used. Few other programs depend on these.
/// A recently added program, starts out without any other programs depending on it.
/// Over time, a program may gradually become more popular.
/// The unpopular programs are assigned `cluster_id` 0.
///
/// In between there are the programs of medium usage.
/// These programs are assigned `cluster_id` 1..8.
///
/// On initialization the `program_popularity.csv` is loaded.
/// This CSV file have been generated by using the PageRank algorithm,
/// and dividing the data into 10 clusters.
#[derive(Clone, Debug)]
pub struct PopularProgramContainer {
cluster_program_ids: Vec<Vec<u32>>,
}
impl PopularProgramContainer {
pub fn load(path: &Path) -> Result<Self, Box<dyn Error>> {
let file = File::open(path)?;
let mut reader = BufReader::new(file);
process_csv_into_clusters(&mut reader)
}
#[allow(dead_code)]
pub fn cluster_program_ids(&self) -> &Vec<Vec<u32>> {
&self.cluster_program_ids
}
#[allow(dead_code)]
pub fn choose_weighted_by_popularity<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<u32> {
let cluster_weight_vec: Vec<(usize,usize)> = vec![
(0, 1), // Low probability for choosing an unpopular program.
(1, 2),
(2, 4),
(3, 8),
(4, 16),
(5, 32),
(6, 64),
(7, 128),
(8, 256),
(9, 512), // High probablility for choosing a popular program.
];
assert!(cluster_weight_vec.len() == (NUMBER_OF_CLUSTERS as usize));
let cluster_id: &usize = &cluster_weight_vec.choose_weighted(rng, |item| item.1).unwrap().0;
let program_ids: &Vec<u32> = &self.cluster_program_ids[*cluster_id];
if program_ids.is_empty() {
// The CSV file is supposed to have several program_ids for every cluster_id.
// No matter what cluster_id is picked, there should be at least 1 program.
// Return None, in the unfortunate case there isn't any program_ids for the picked cluser_id.
return None;
}
let program_id: u32 = match program_ids.choose(rng) {
Some(program_id) => *program_id,
None => {
// For a non-empty vector, this shouldn't happen.
return None;
}
};
Some(program_id)
}
fn choose_from_cluster<R: Rng + ?Sized>(&self, rng: &mut R, cluster_id: u8) -> Option<u32> {
assert!(self.cluster_program_ids.len() == (NUMBER_OF_CLUSTERS as usize));
assert!((cluster_id as usize) < self.cluster_program_ids.len());
let program_ids: &Vec<u32> = &self.cluster_program_ids[cluster_id as usize];
if program_ids.is_empty() {
// The CSV file is supposed to have several program_ids for every cluster_id.
// No matter what cluster_id is picked, there should be at least 1 program.
// Return None, in the unfortunate case there isn't any program_ids for the picked cluser_id.
return None;
}
let program_id: u32 = match program_ids.choose(rng) {
Some(program_id) => *program_id,
None => {
// For a non-empty vector, this shouldn't happen.
return None;
}
};
Some(program_id)
}
#[allow(dead_code)]
pub fn choose_most_popular<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<u32> {
self.choose_from_cluster(rng, 9)
}
#[allow(dead_code)]
pub fn choose_medium_popular<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<u32> {
let cluster_id: u8 = rng.gen_range(1..8);
self.choose_from_cluster(rng, cluster_id)
}
#[allow(dead_code)]
pub fn choose_least_popular<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<u32> {
self.choose_from_cluster(rng, 0)
}
}
#[derive(Debug)]
pub enum ProgramPopularityError {
PopularityClusterIdOutOfBounds,
}
impl fmt::Display for ProgramPopularityError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::PopularityClusterIdOutOfBounds =>
write!(f, "Cluster id is out of bounds")
}
}
}
impl Error for ProgramPopularityError {}
fn process_csv_into_clusters(reader: &mut dyn BufRead) -> Result<PopularProgramContainer, Box<dyn Error>> {
let records: Vec<Record> = process_csv_data(reader)?;
convert_records_to_clusters(records)
}
#[derive(Debug, Deserialize)]
struct Record {
#[serde(rename = "program id")]
program_id: u32,
#[serde(rename = "popularity")]
popularity_cluster_id: u8,
}
impl Record {
#[cfg(test)]
fn new(program_id: u32, popularity_cluster_id: u8) -> Self {
Self {
program_id: program_id,
popularity_cluster_id: popularity_cluster_id,
}
}
}
fn process_csv_data(reader: &mut dyn BufRead) -> Result<Vec<Record>, Box<dyn Error>> {
let mut records = Vec::<Record>::new();
let mut csv_reader = csv::ReaderBuilder::new()
.delimiter(b';')
.from_reader(reader);
for result in csv_reader.deserialize() {
let record: Record = result?;
records.push(record);
}
Ok(records)
}
fn convert_records_to_clusters(records: Vec<Record>) -> Result<PopularProgramContainer, Box<dyn Error>> {
// Ensure there isn't too many clusters
let mut max_cluster_id: u8 = 0;
for record in &records {
if max_cluster_id < record.popularity_cluster_id {
max_cluster_id = record.popularity_cluster_id;
}
}
if max_cluster_id >= NUMBER_OF_CLUSTERS {
return Err(Box::new(ProgramPopularityError::PopularityClusterIdOutOfBounds));
}
// Identify program_ids for each cluster
let mut clusters: Vec<Vec<u32>> = vec!();
for cluster_id in 0..NUMBER_OF_CLUSTERS {
let mut program_ids: Vec<u32> = vec!();
for record in &records {
if record.popularity_cluster_id == cluster_id {
program_ids.push(record.program_id);
}
}
clusters.push(program_ids);
}
let container = PopularProgramContainer {
cluster_program_ids: clusters
};
Ok(container)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_10000_process_csv_data() {
let data = "\
program id;popularity
4;1
5;9
6;8
7;3
";
let mut input: &[u8] = data.as_bytes();
let records: Vec<Record> = process_csv_data(&mut input).unwrap();
let strings: Vec<String> = records.iter().map(|record| {
format!("{} {}", record.program_id, record.popularity_cluster_id)
}).collect();
let strings_joined: String = strings.join(",");
assert_eq!(strings_joined, "4 1,5 9,6 8,7 3");
}
#[test]
fn test_10001_convert_records_to_clusters_error_too_many_clusters() {
let records: Vec<Record> = vec![
// Cluster 9 is the highest allowed cluster.
// Here using cluster 10 is beyond the max cluster and should trigger an error.
Record::new(666, 10),
];
let result = convert_records_to_clusters(records);
assert_eq!(result.is_err(), true);
}
#[test]
fn test_10002_convert_records_to_clusters_success() {
let records: Vec<Record> = vec![
// 3 items in cluster 0
Record::new(101, 0),
Record::new(102, 0),
Record::new(103, 0),
// 1 item in cluster 4
Record::new(301, 4),
// 2 items in cluster 9
Record::new(901, 9),
Record::new(902, 9),
];
let container: PopularProgramContainer = convert_records_to_clusters(records).unwrap();
let cluster_program_ids: &Vec<Vec<u32>> = container.cluster_program_ids();
assert_eq!(cluster_program_ids.len(), 10);
assert_eq!(cluster_program_ids[0].len(), 3);
assert_eq!(cluster_program_ids[4].len(), 1);
assert_eq!(cluster_program_ids[9].len(), 2);
}
}
|