File size: 26,534 Bytes
d5bfab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
use super::{Genome, GenomeItem, GenomeMutateContext, save_candidate_program, ToGenomeItemVec};
use super::{CreateFunnel, Funnel};
use super::{PreventFlooding, TermComputer};
use super::{PerformanceClassifierResult, PerformanceClassifier};
use super::MetricEvent;
use super::metrics_run_miner_loop::MetricsRunMinerLoop;
use crate::oeis::TermsToProgramIdSet;
use crate::config::{Config, MinerFilterMode};
use loda_rust_core::control::DependencyManager;
use loda_rust_core::execute::{ProgramCache, ProgramId, ProgramRunner, ProgramSerializer};
use loda_rust_core::util::{BigIntVec, BigIntVecToString};
use loda_rust_core::parser::ParsedProgram;
use std::collections::HashSet;
use std::num::NonZeroUsize;
use std::path::PathBuf;
use std::rc::Rc;
use std::time::Instant;
use rand::seq::SliceRandom;
use rand::SeedableRng;
use rand::rngs::StdRng;
use std::sync::{Arc, Mutex};

const EXECUTE_BATCH_TIME_LIMIT: u128 = 2000;
const INTERVAL_UNTIL_NEXT_METRIC_SYNC: u128 = 100;
const MINIMUM_PROGRAM_LENGTH: usize = 6;
const LOAD_INITIAL_GENOME_MINIMUM_PROGRAM_LENGTH: usize = 8;
const LOAD_INITIAL_GENOME_RETRIES: usize = 1000;
const MINER_CACHE_CAPACITY: usize = 1500;
const ITERATIONS_BETWEEN_PICKING_A_NEW_INITIAL_GENOME: usize = 300;
const ITERATIONS_BETWEEN_RELOADING_CURRENT_GENOME: usize = 5;

#[derive(Clone, Debug)]
pub struct ExecuteBatchResult {
    number_of_mined_high_prio: usize,
    number_of_mined_low_prio: usize,
}

impl ExecuteBatchResult {
    pub fn new() -> Self {
        Self {
            number_of_mined_high_prio: 0, 
            number_of_mined_low_prio: 0,
        }
    }

    pub fn number_of_mined_high_prio(&self) -> usize {
        self.number_of_mined_high_prio
    }

    pub fn number_of_mined_low_prio(&self) -> usize {
        self.number_of_mined_low_prio
    }

    pub fn increment_number_of_mined_high_prio(&mut self) {
        self.number_of_mined_high_prio += 1;
    }

    pub fn increment_number_of_mined_low_prio(&mut self) {
        self.number_of_mined_low_prio += 1;
    }
}

pub struct RunMinerLoop {
    metrics_callback: Option<Box<dyn Fn(MetricEvent) + Send>>,
    funnel: Funnel,
    mine_event_dir: PathBuf,
    cache: ProgramCache,
    prevent_flooding: Arc<Mutex<PreventFlooding>>,
    context: GenomeMutateContext,
    genome: Genome,
    rng: StdRng,
    metric: MetricsRunMinerLoop,
    current_program_id: u64,
    current_genome_vec: Vec<GenomeItem>,
    current_message_vec: Vec<String>,
    iteration: usize,
    reload: bool,
    term_computer: TermComputer,
    terms_to_program_id: Arc<TermsToProgramIdSet>,
    suppress_low_priority_programs: bool,
}

impl RunMinerLoop {
    pub fn new(
        config: &Config,
        prevent_flooding: Arc<Mutex<PreventFlooding>>,
        initial_random_seed: u64,
    ) -> Self {
        let rng: StdRng = StdRng::seed_from_u64(initial_random_seed);

        let mine_event_dir: PathBuf = config.mine_event_dir();

        let suppress_low_priority_programs: bool = match config.miner_filter_mode() {
            MinerFilterMode::All => false,
            MinerFilterMode::New => true
        };
    
        let capacity = NonZeroUsize::new(MINER_CACHE_CAPACITY).unwrap();
        Self {
            metrics_callback: None,
            funnel: Funnel::create_empty_funnel(),
            mine_event_dir: PathBuf::from(mine_event_dir),
            cache: ProgramCache::with_capacity(capacity),
            prevent_flooding: prevent_flooding,
            context: GenomeMutateContext::default(),
            genome: Genome::new(),
            rng: rng,
            metric: MetricsRunMinerLoop::new(),
            current_program_id: 0,
            current_genome_vec: vec!(),
            current_message_vec: vec!(),
            iteration: 0,
            reload: true,
            term_computer: TermComputer::new(),
            terms_to_program_id: Arc::new(TermsToProgramIdSet::new()),
            suppress_low_priority_programs: suppress_low_priority_programs,
        }
    }

    pub fn execute_batch(&mut self, dependency_manager: &mut DependencyManager) -> anyhow::Result<ExecuteBatchResult> {
        let start = Instant::now();
        let mut progress_time: Instant = start;
        let mut execute_batch_result = ExecuteBatchResult::new();
        loop {
            self.execute_one_iteration(dependency_manager, &mut execute_batch_result);
            let elapsed: u128 = progress_time.elapsed().as_millis();
            if elapsed < INTERVAL_UNTIL_NEXT_METRIC_SYNC {
                continue;
            }
            self.submit_metrics();
            self.submit_metrics_for_dependency_manager(dependency_manager);
            progress_time = Instant::now();
            let elapsed_since_start: u128 = start.elapsed().as_millis();
            if elapsed_since_start < EXECUTE_BATCH_TIME_LIMIT {
                continue;
            }
            return Ok(execute_batch_result);
        }
    }

    pub fn set_metrics_callback(&mut self, c: impl Fn(MetricEvent) + Send + 'static) {
        self.metrics_callback = Some(Box::new(c));
    }

    fn submit_metric_event(&mut self, metric_event: MetricEvent) {
        match &self.metrics_callback {
            Some(callback) => {
                callback(metric_event);
            },
            None => {}
        }
    }

    fn submit_metrics(&mut self) {
        self.submit_metric_event(MetricEvent::Funnel { 
            terms10: self.funnel.metric_number_of_candidates_with_10terms(),
            terms20: self.funnel.metric_number_of_candidates_with_20terms(),
            terms30: self.funnel.metric_number_of_candidates_with_30terms(),
            terms40: self.funnel.metric_number_of_candidates_with_40terms(),
            false_positives: self.metric.number_of_bloomfilter_false_positive,
        });
        self.submit_metric_event(MetricEvent::Genome { 
            cannot_load: self.metric.number_of_failed_genome_loads,
            cannot_parse: self.metric.number_of_programs_that_cannot_parse,
            too_short: self.metric.number_of_too_short_programs,
            no_output: self.metric.number_of_programs_without_output,
            no_mutation: self.metric.number_of_failed_mutations,
            compute_error: self.metric.number_of_compute_errors,
        });
        self.submit_metric_event(MetricEvent::Cache { 
            hit: self.cache.metric_hit(),
            miss_program_oeis: self.cache.metric_miss_for_program_oeis(),
            miss_program_without_id: self.cache.metric_miss_for_program_without_id(),
        });
        self.submit_metric_event(MetricEvent::General { 
            number_of_iterations: self.metric.number_of_iterations,
            prevent_flooding: self.metric.number_of_prevented_floodings,
            reject_self_dependency: self.metric.number_of_self_dependencies,
            candidate_program: self.metric.number_of_candidate_programs,
        });
        self.funnel.reset_metrics();
        self.cache.reset_metrics();
        self.metric.reset_metrics();
    }

    fn submit_metrics_for_dependency_manager(&mut self, dependency_manager: &mut DependencyManager) {
        self.submit_metric_event(MetricEvent::DependencyManager {
            read_success: dependency_manager.metric_read_success(),
            read_error: dependency_manager.metric_read_error(),
        });
        dependency_manager.reset_metrics();
    }

    pub fn set_funnel(&mut self, funnel: Funnel) {
        self.funnel = funnel;
    }

    pub fn set_genome_mutate_context(&mut self, genome_mutate_context: GenomeMutateContext) {
        self.context = genome_mutate_context;
    }

    pub fn set_terms_to_program_id(&mut self, terms_to_program_id: Arc<TermsToProgramIdSet>) {
        self.terms_to_program_id = terms_to_program_id;
    }

    pub fn load_initial_genome_program(&mut self, dependency_manager: &mut DependencyManager) -> anyhow::Result<()> {
        for _ in 0..LOAD_INITIAL_GENOME_RETRIES {
            let program_id: u32 = match self.context.choose_initial_genome_program(&mut self.rng) {
                Some(value) => value,
                None => {
                    return Err(anyhow::anyhow!("choose_initial_genome_program() returned None, seems like data model is empty"));
                }
            };
            let parsed_program: ParsedProgram = match Genome::load_program_with_id(dependency_manager, program_id as u64) {
                Ok(value) => value,
                Err(error) => {
                    error!("Unable to load program. {:?}", error);
                    continue;
                }
            };
            if parsed_program.instruction_vec.len() < LOAD_INITIAL_GENOME_MINIMUM_PROGRAM_LENGTH {
                continue;
            }
            self.current_program_id = program_id as u64;

            let mut genome_vec: Vec<GenomeItem> = parsed_program.to_genome_item_vec();

            let inline_probability_vec: Vec<(bool,usize)> = vec![
                (false, 95),
                (true, 5),
            ];
            let should_inline_seq: &bool = &inline_probability_vec.choose_weighted(&mut self.rng, |item| item.1).unwrap().0;

            let message_vec: Vec<String>;
            if *should_inline_seq {
                let did_mutate_ok = Genome::mutate_inline_seq(&mut self.rng, dependency_manager, &mut genome_vec);
                let mutate_message: String;
                if did_mutate_ok {
                    mutate_message = "mutate: mutate_inline_seq".to_string();
                } else {
                    mutate_message = "mutate: mutate_inline_seq, no change".to_string();
                }
                message_vec = vec![
                    format!("template {}", program_id),
                    mutate_message
                ];
            } else {
                message_vec = vec![
                    format!("template {}", program_id)
                ];
            }

            self.current_genome_vec = genome_vec;
            self.current_message_vec = message_vec;
            return Ok(());
        }
        return Err(anyhow::anyhow!("Unable to pick among available programs"));
    }

    fn execute_one_iteration(
        &mut self, 
        dependency_manager: &mut DependencyManager, 
        execute_batch_result: &mut ExecuteBatchResult
    ) {
        self.metric.number_of_iterations += 1;
        if (self.iteration % ITERATIONS_BETWEEN_RELOADING_CURRENT_GENOME) == 0 {
            self.reload = true;
        }
        if (self.iteration % ITERATIONS_BETWEEN_PICKING_A_NEW_INITIAL_GENOME) == 0 {
            match self.load_initial_genome_program(dependency_manager) {
                Ok(_) => {},
                Err(error) => {
                    error!("Failed loading initial genome. {:?}", error);
                    panic!("Failed loading initial genome. {:?}", error);
                }
            }
        }
        if self.reload {
            self.genome.set_message_vec(self.current_message_vec.clone());
            self.genome.set_genome_vec(self.current_genome_vec.clone());
            self.reload = false;
        }

        self.iteration += 1;
        
        if !self.genome.mutate(&mut self.rng, &self.context) {
            self.metric.number_of_failed_mutations += 1;
            return;
        }

        // println!("#{} Current genome\n{}", iteration, self.genome);
    
        let genome_parsed_program: ParsedProgram = self.genome.to_parsed_program();
        if genome_parsed_program.instruction_vec.len() < MINIMUM_PROGRAM_LENGTH {
            self.metric.number_of_too_short_programs += 1;
            self.reload = true;
            return;
        }

        // Create program from genome
        let result_parse = dependency_manager.parse_stage2(
            ProgramId::ProgramWithoutId, 
            &genome_parsed_program
        );
        let runner: ProgramRunner = match result_parse {
            Ok(value) => value,
            Err(_error) => {
                // debug!("iteration: {} cannot be parsed. {}", iteration, error);
                self.metric.number_of_programs_that_cannot_parse += 1;
                return;
            }
        };

        // Execute program
        self.term_computer.reset();
        match self.term_computer.compute(&mut self.cache, &runner, 10) {
            Ok(_) => {},
            Err(_error) => {
                // debug!("iteration: {} cannot be run. {:?}", iteration, error);
                self.metric.number_of_compute_errors += 1;
                return;
            }
        }
        let terms10: &BigIntVec = &self.term_computer.terms;
        // println!("terms10: {:?}", terms10);
        if !self.funnel.check10(terms10) {
            return;
        }

        match self.term_computer.compute(&mut self.cache, &runner, 20) {
            Ok(_) => {},
            Err(_error) => {
                // debug!("iteration: {} cannot be run. {:?}", iteration, error);
                self.metric.number_of_compute_errors += 1;
                return;
            }
        }
        let funnel20result: Option<usize> = self.funnel.check20_with_wildcards(&self.term_computer.terms);
        let funnel20_number_of_wildcards: usize;
        match funnel20result {
            Some(wildcard_count) => {
                funnel20_number_of_wildcards = wildcard_count;
            },
            None => {
                // terms is not contained in bloomfilter
                return;
            }
        }

        match self.term_computer.compute(&mut self.cache, &runner, 30) {
            Ok(_) => {},
            Err(_error) => {
                // debug!("iteration: {} cannot be run. {:?}", iteration, error);
                self.metric.number_of_compute_errors += 1;
                return;
            }
        }
        let funnel30result: Option<usize> = self.funnel.check30_with_wildcards(&self.term_computer.terms);
        let funnel30_number_of_wildcards: usize;
        match funnel30result {
            Some(wildcard_count) => {
                funnel30_number_of_wildcards = wildcard_count;
            },
            None => {
                // terms is not contained in bloomfilter
                return;
            }
        }

        match self.term_computer.compute(&mut self.cache, &runner, 40) {
            Ok(_) => {},
            Err(_error) => {
                // debug!("iteration: {} cannot be run. {:?}", iteration, error);
                self.metric.number_of_compute_errors += 1;
                return;
            }
        }
        let terms40_original: BigIntVec = self.term_computer.terms.clone();
        {
            let prevent_flooding = self.prevent_flooding.lock().unwrap();
            if prevent_flooding.contains(&terms40_original) {
                // debug!("prevented flooding");
                self.metric.number_of_prevented_floodings += 1;
                self.reload = true;
                return;
            }
        }
        let mut funnel40terms: BigIntVec = terms40_original.clone();
        let funnel40result: Option<usize> = self.funnel.mut_check40_with_wildcards(&mut funnel40terms);
        let funnel40_number_of_wildcards: usize;
        match funnel40result {
            Some(wildcard_count) => {
                funnel40_number_of_wildcards = wildcard_count;
            },
            None => {
                // terms is not contained in bloomfilter
                return;
            }
        }
        let terms40_wildcard: &BigIntVec = &funnel40terms;

        // Reject, if it's identical to one of the programs that this program depends on
        let depends_on_program_ids: HashSet<u32> = self.genome.depends_on_program_ids();
        let mut reject_self_dependency = false;
        for program_id in &depends_on_program_ids {
            let program_runner: Rc::<ProgramRunner> = match dependency_manager.load(*program_id as u64) {
                Ok(value) => value,
                Err(error) => {
                    error!("Cannot verify, failed to load program id {}, {:?}", program_id, error);
                    continue;
                }
            };
            let mut verify_term_computer = TermComputer::new();
            match verify_term_computer.compute(&mut self.cache, &program_runner, 40) {
                Ok(_) => {},
                Err(error) => {
                    debug!("Cannot verify, unable to run program id {}, {:?}", program_id, error);
                    continue;
                }
            }
            let verify_terms40: &BigIntVec = &verify_term_computer.terms;
            if terms40_original == *verify_terms40 {
                // The candidate program seems to be generating the same terms
                // as the program that it depends on.
                // debug!("Rejecting program with a dependency to itself. {}", program_id);
                reject_self_dependency = true;
                break;
            }
        }
        if reject_self_dependency {
            self.metric.number_of_self_dependencies += 1;
            self.reload = true;
            return;
        }

        // lookup in stripped.zip and find the corresponding program_ids
        let key: String = terms40_wildcard.to_compact_comma_string();
        let corresponding_program_id_set: &HashSet<u32> = match self.terms_to_program_id.get(&key) {
            Some(value) => value,
            None => {
                debug!("Ignoring false-positive in bloomfilter funnel. Could not find the candiate in the oeis stripped file. funnel20_number_of_wildcards: {:?} funnel30_number_of_wildcards: {:?} funnel40_number_of_wildcards: {:?} key: {:?}", funnel20_number_of_wildcards, funnel30_number_of_wildcards, funnel40_number_of_wildcards, key);
                self.metric.number_of_bloomfilter_false_positive += 1;
                self.reload = true;
                return
            }
        };
        let intersection: HashSet<&u32> = depends_on_program_ids.intersection(corresponding_program_id_set).collect();
        if !intersection.is_empty() {
            debug!("Ignoring self-dependency. There is this intersection: {:?}", intersection);
            self.metric.number_of_self_dependencies += 1;
            self.reload = true;
            return
        }
        debug!("Found corresponding program_id's: {:?} funnel20_number_of_wildcards: {:?} funnel30_number_of_wildcards: {:?} funnel40_number_of_wildcards: {:?}", corresponding_program_id_set, funnel20_number_of_wildcards, funnel30_number_of_wildcards, funnel40_number_of_wildcards);

        let steps: &Vec<u64> = &self.term_computer.steps;
        let steps_len: usize = steps.len();
        let performance_classifier = PerformanceClassifier::new(10);
        let mut maybe_a_new_program = false;
        let mut is_existing_program_with_better_performance = false;
        let mut priority = ProgramCandidatePriority::Low;
        for program_id in corresponding_program_id_set {
            if self.context.is_program_id_invalid(*program_id) {
                debug!("Keep. Maybe a new program. The program id {} is contained in 'programs_invalid.csv'", program_id);
                self.genome.append_message(format!("keep: maybe a new program. The program id {} is contained in 'programs_invalid.csv'", program_id));
                maybe_a_new_program = true;
                break;
            }
            let program_runner: Rc::<ProgramRunner> = match dependency_manager.load(*program_id as u64) {
                Ok(value) => value,
                Err(error) => {
                    debug!("Keep. Maybe a new program. Cannot verify, failed to load program id {}, {:?}", program_id, error);
                    self.genome.append_message(format!("keep: maybe a new program. cannot load program {:?} with the same initial terms. error: {:?}", program_id, error));
                    self.genome.append_message(format!("priority: high"));
                    maybe_a_new_program = true;
                    priority = ProgramCandidatePriority::High;
                    break;
                }
            };
            let mut verify_term_computer = TermComputer::new();
            match verify_term_computer.compute(&mut self.cache, &program_runner, 40) {
                Ok(_) => {},
                Err(error) => {
                    debug!("Keep. Maybe a new program. Cannot verify, unable to run program id {}, {:?}", program_id, error);
                    self.genome.append_message(format!("keep: maybe a new program. cannot compute program {:?} with the same initial terms. error: {:?}", program_id, error));
                    maybe_a_new_program = true;
                    break;
                }
            };
            let verify_terms40: &BigIntVec = &verify_term_computer.terms;
            if terms40_original != *verify_terms40 {
                debug!("Ignoring program with different terms. {}", program_id);
                continue;
            }
            if verify_term_computer.steps.len() != steps_len {
                error!("verify_term_computer.steps.len() {:?} should be the same as steps_len: {:?}", verify_term_computer.steps.len(), steps_len);
                panic!("integrity problem. Length of the computed terms must be the same.");
            }

            let sum_program0: u64 = self.term_computer.step_count;
            let sum_program1: u64 = verify_term_computer.step_count;
            if sum_program0 >= sum_program1 {
                debug!("Reject. The new program is slower or identical to the old program");
                continue;
            }

            let pcr: PerformanceClassifierResult = performance_classifier.analyze(&steps, &verify_term_computer.steps);
            match pcr {
                PerformanceClassifierResult::ErrorDifferentInputVectorLengths => {
                    panic!("integrity problem. Length of the computed terms must be the same.");
                },
                PerformanceClassifierResult::ErrorTooShortInputVector => {
                    panic!("integrity problem. The length of the first slice goes beyond the input length");
                },
                PerformanceClassifierResult::Identical => {
                    debug!("Reject. Identical performance as the existing program. {:?}", program_id);
                    continue;
                },
                PerformanceClassifierResult::NewProgramIsAlwaysFaster => {
                    debug!("Keep. The new program is always faster than the old program.");
                    self.genome.append_message(format!("keep: performance NewProgramIsAlwaysFaster than {:?}", program_id));
                    is_existing_program_with_better_performance = true;
                    break;
                },
                PerformanceClassifierResult::NewProgramIsEqualOrFaster => {
                    debug!("Keep. The new program is faster or similar than the old program.");
                    self.genome.append_message(format!("keep: performance NewProgramIsEqualOrFaster than {:?}", program_id));
                    is_existing_program_with_better_performance = true;
                    break;
                },
                PerformanceClassifierResult::NewProgramIsAlwaysFasterWhenSkippingTheFirstSlice => {
                    debug!("Keep. The new program is faster when skipping the first slice");
                    self.genome.append_message(format!("keep: performance NewProgramIsAlwaysFasterWhenSkippingTheFirstSlice than {:?}", program_id));
                    is_existing_program_with_better_performance = true;
                    break;
                },
                PerformanceClassifierResult::RejectNewProgram => {
                    debug!("Reject. Worse performance than the existing program. {:?}", program_id);
                    continue;
                }
            }
        }
        let keep_it = maybe_a_new_program || is_existing_program_with_better_performance;
        if !keep_it {
            debug!("Reject. Worse performance than existing programs.");
            self.reload = true;
            return;
        }

        if funnel20_number_of_wildcards > 0 {
            self.genome.append_message(format!("funnel20 number of wildcards: {:?}", funnel20_number_of_wildcards));
        }
        if funnel30_number_of_wildcards > 0 {
            self.genome.append_message(format!("funnel30 number of wildcards: {:?}", funnel30_number_of_wildcards));
        }
        if funnel40_number_of_wildcards > 0 {
            self.genome.append_message(format!("funnel40 number of wildcards: {:?}", funnel40_number_of_wildcards));
        }

        {
            let mut prevent_flooding = self.prevent_flooding.lock().unwrap();
            if prevent_flooding.try_register(&terms40_original).is_err() {
                debug!("already contained in prevent flooding dictionary");
            }
        }

        if self.suppress_low_priority_programs {
            if priority == ProgramCandidatePriority::Low {
                debug!("suppressing low priority program");
                return;
            }
        }

        // Yay, this candidate program seems to be good.
        // It's either an entirely new program.
        // Or it's faster than the existing program.
        // Save a snapshot of this program to `$HOME/.loda-rust/mine-even/`
        let mut serializer = ProgramSerializer::new();
        serializer.append_comment(terms40_original.to_compact_comma_string());
        serializer.append_empty_line();
        runner.serialize(&mut serializer);
        serializer.append_empty_line();
        for message in self.genome.message_vec() {
            serializer.append_comment(message);
        }
        serializer.append_empty_line();
        let candidate_program: String = serializer.to_string();

        if let Err(error) = save_candidate_program(&self.mine_event_dir, self.iteration, &candidate_program) {
            println!("; GENOME\n{}", self.genome);
            error!("Unable to save candidate program: {:?}", error);
            return;
        }
        self.metric.number_of_candidate_programs += 1;

        match priority {
            ProgramCandidatePriority::Low => {
                execute_batch_result.increment_number_of_mined_low_prio();
            },
            ProgramCandidatePriority::High => {
                execute_batch_result.increment_number_of_mined_high_prio();
            }
        }

    }
}

#[derive(Debug, PartialEq)]
enum ProgramCandidatePriority {
    Low,
    High,
}