File size: 26,534 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
use super::{Genome, GenomeItem, GenomeMutateContext, save_candidate_program, ToGenomeItemVec};
use super::{CreateFunnel, Funnel};
use super::{PreventFlooding, TermComputer};
use super::{PerformanceClassifierResult, PerformanceClassifier};
use super::MetricEvent;
use super::metrics_run_miner_loop::MetricsRunMinerLoop;
use crate::oeis::TermsToProgramIdSet;
use crate::config::{Config, MinerFilterMode};
use loda_rust_core::control::DependencyManager;
use loda_rust_core::execute::{ProgramCache, ProgramId, ProgramRunner, ProgramSerializer};
use loda_rust_core::util::{BigIntVec, BigIntVecToString};
use loda_rust_core::parser::ParsedProgram;
use std::collections::HashSet;
use std::num::NonZeroUsize;
use std::path::PathBuf;
use std::rc::Rc;
use std::time::Instant;
use rand::seq::SliceRandom;
use rand::SeedableRng;
use rand::rngs::StdRng;
use std::sync::{Arc, Mutex};
const EXECUTE_BATCH_TIME_LIMIT: u128 = 2000;
const INTERVAL_UNTIL_NEXT_METRIC_SYNC: u128 = 100;
const MINIMUM_PROGRAM_LENGTH: usize = 6;
const LOAD_INITIAL_GENOME_MINIMUM_PROGRAM_LENGTH: usize = 8;
const LOAD_INITIAL_GENOME_RETRIES: usize = 1000;
const MINER_CACHE_CAPACITY: usize = 1500;
const ITERATIONS_BETWEEN_PICKING_A_NEW_INITIAL_GENOME: usize = 300;
const ITERATIONS_BETWEEN_RELOADING_CURRENT_GENOME: usize = 5;
#[derive(Clone, Debug)]
pub struct ExecuteBatchResult {
number_of_mined_high_prio: usize,
number_of_mined_low_prio: usize,
}
impl ExecuteBatchResult {
pub fn new() -> Self {
Self {
number_of_mined_high_prio: 0,
number_of_mined_low_prio: 0,
}
}
pub fn number_of_mined_high_prio(&self) -> usize {
self.number_of_mined_high_prio
}
pub fn number_of_mined_low_prio(&self) -> usize {
self.number_of_mined_low_prio
}
pub fn increment_number_of_mined_high_prio(&mut self) {
self.number_of_mined_high_prio += 1;
}
pub fn increment_number_of_mined_low_prio(&mut self) {
self.number_of_mined_low_prio += 1;
}
}
pub struct RunMinerLoop {
metrics_callback: Option<Box<dyn Fn(MetricEvent) + Send>>,
funnel: Funnel,
mine_event_dir: PathBuf,
cache: ProgramCache,
prevent_flooding: Arc<Mutex<PreventFlooding>>,
context: GenomeMutateContext,
genome: Genome,
rng: StdRng,
metric: MetricsRunMinerLoop,
current_program_id: u64,
current_genome_vec: Vec<GenomeItem>,
current_message_vec: Vec<String>,
iteration: usize,
reload: bool,
term_computer: TermComputer,
terms_to_program_id: Arc<TermsToProgramIdSet>,
suppress_low_priority_programs: bool,
}
impl RunMinerLoop {
pub fn new(
config: &Config,
prevent_flooding: Arc<Mutex<PreventFlooding>>,
initial_random_seed: u64,
) -> Self {
let rng: StdRng = StdRng::seed_from_u64(initial_random_seed);
let mine_event_dir: PathBuf = config.mine_event_dir();
let suppress_low_priority_programs: bool = match config.miner_filter_mode() {
MinerFilterMode::All => false,
MinerFilterMode::New => true
};
let capacity = NonZeroUsize::new(MINER_CACHE_CAPACITY).unwrap();
Self {
metrics_callback: None,
funnel: Funnel::create_empty_funnel(),
mine_event_dir: PathBuf::from(mine_event_dir),
cache: ProgramCache::with_capacity(capacity),
prevent_flooding: prevent_flooding,
context: GenomeMutateContext::default(),
genome: Genome::new(),
rng: rng,
metric: MetricsRunMinerLoop::new(),
current_program_id: 0,
current_genome_vec: vec!(),
current_message_vec: vec!(),
iteration: 0,
reload: true,
term_computer: TermComputer::new(),
terms_to_program_id: Arc::new(TermsToProgramIdSet::new()),
suppress_low_priority_programs: suppress_low_priority_programs,
}
}
pub fn execute_batch(&mut self, dependency_manager: &mut DependencyManager) -> anyhow::Result<ExecuteBatchResult> {
let start = Instant::now();
let mut progress_time: Instant = start;
let mut execute_batch_result = ExecuteBatchResult::new();
loop {
self.execute_one_iteration(dependency_manager, &mut execute_batch_result);
let elapsed: u128 = progress_time.elapsed().as_millis();
if elapsed < INTERVAL_UNTIL_NEXT_METRIC_SYNC {
continue;
}
self.submit_metrics();
self.submit_metrics_for_dependency_manager(dependency_manager);
progress_time = Instant::now();
let elapsed_since_start: u128 = start.elapsed().as_millis();
if elapsed_since_start < EXECUTE_BATCH_TIME_LIMIT {
continue;
}
return Ok(execute_batch_result);
}
}
pub fn set_metrics_callback(&mut self, c: impl Fn(MetricEvent) + Send + 'static) {
self.metrics_callback = Some(Box::new(c));
}
fn submit_metric_event(&mut self, metric_event: MetricEvent) {
match &self.metrics_callback {
Some(callback) => {
callback(metric_event);
},
None => {}
}
}
fn submit_metrics(&mut self) {
self.submit_metric_event(MetricEvent::Funnel {
terms10: self.funnel.metric_number_of_candidates_with_10terms(),
terms20: self.funnel.metric_number_of_candidates_with_20terms(),
terms30: self.funnel.metric_number_of_candidates_with_30terms(),
terms40: self.funnel.metric_number_of_candidates_with_40terms(),
false_positives: self.metric.number_of_bloomfilter_false_positive,
});
self.submit_metric_event(MetricEvent::Genome {
cannot_load: self.metric.number_of_failed_genome_loads,
cannot_parse: self.metric.number_of_programs_that_cannot_parse,
too_short: self.metric.number_of_too_short_programs,
no_output: self.metric.number_of_programs_without_output,
no_mutation: self.metric.number_of_failed_mutations,
compute_error: self.metric.number_of_compute_errors,
});
self.submit_metric_event(MetricEvent::Cache {
hit: self.cache.metric_hit(),
miss_program_oeis: self.cache.metric_miss_for_program_oeis(),
miss_program_without_id: self.cache.metric_miss_for_program_without_id(),
});
self.submit_metric_event(MetricEvent::General {
number_of_iterations: self.metric.number_of_iterations,
prevent_flooding: self.metric.number_of_prevented_floodings,
reject_self_dependency: self.metric.number_of_self_dependencies,
candidate_program: self.metric.number_of_candidate_programs,
});
self.funnel.reset_metrics();
self.cache.reset_metrics();
self.metric.reset_metrics();
}
fn submit_metrics_for_dependency_manager(&mut self, dependency_manager: &mut DependencyManager) {
self.submit_metric_event(MetricEvent::DependencyManager {
read_success: dependency_manager.metric_read_success(),
read_error: dependency_manager.metric_read_error(),
});
dependency_manager.reset_metrics();
}
pub fn set_funnel(&mut self, funnel: Funnel) {
self.funnel = funnel;
}
pub fn set_genome_mutate_context(&mut self, genome_mutate_context: GenomeMutateContext) {
self.context = genome_mutate_context;
}
pub fn set_terms_to_program_id(&mut self, terms_to_program_id: Arc<TermsToProgramIdSet>) {
self.terms_to_program_id = terms_to_program_id;
}
pub fn load_initial_genome_program(&mut self, dependency_manager: &mut DependencyManager) -> anyhow::Result<()> {
for _ in 0..LOAD_INITIAL_GENOME_RETRIES {
let program_id: u32 = match self.context.choose_initial_genome_program(&mut self.rng) {
Some(value) => value,
None => {
return Err(anyhow::anyhow!("choose_initial_genome_program() returned None, seems like data model is empty"));
}
};
let parsed_program: ParsedProgram = match Genome::load_program_with_id(dependency_manager, program_id as u64) {
Ok(value) => value,
Err(error) => {
error!("Unable to load program. {:?}", error);
continue;
}
};
if parsed_program.instruction_vec.len() < LOAD_INITIAL_GENOME_MINIMUM_PROGRAM_LENGTH {
continue;
}
self.current_program_id = program_id as u64;
let mut genome_vec: Vec<GenomeItem> = parsed_program.to_genome_item_vec();
let inline_probability_vec: Vec<(bool,usize)> = vec![
(false, 95),
(true, 5),
];
let should_inline_seq: &bool = &inline_probability_vec.choose_weighted(&mut self.rng, |item| item.1).unwrap().0;
let message_vec: Vec<String>;
if *should_inline_seq {
let did_mutate_ok = Genome::mutate_inline_seq(&mut self.rng, dependency_manager, &mut genome_vec);
let mutate_message: String;
if did_mutate_ok {
mutate_message = "mutate: mutate_inline_seq".to_string();
} else {
mutate_message = "mutate: mutate_inline_seq, no change".to_string();
}
message_vec = vec![
format!("template {}", program_id),
mutate_message
];
} else {
message_vec = vec![
format!("template {}", program_id)
];
}
self.current_genome_vec = genome_vec;
self.current_message_vec = message_vec;
return Ok(());
}
return Err(anyhow::anyhow!("Unable to pick among available programs"));
}
fn execute_one_iteration(
&mut self,
dependency_manager: &mut DependencyManager,
execute_batch_result: &mut ExecuteBatchResult
) {
self.metric.number_of_iterations += 1;
if (self.iteration % ITERATIONS_BETWEEN_RELOADING_CURRENT_GENOME) == 0 {
self.reload = true;
}
if (self.iteration % ITERATIONS_BETWEEN_PICKING_A_NEW_INITIAL_GENOME) == 0 {
match self.load_initial_genome_program(dependency_manager) {
Ok(_) => {},
Err(error) => {
error!("Failed loading initial genome. {:?}", error);
panic!("Failed loading initial genome. {:?}", error);
}
}
}
if self.reload {
self.genome.set_message_vec(self.current_message_vec.clone());
self.genome.set_genome_vec(self.current_genome_vec.clone());
self.reload = false;
}
self.iteration += 1;
if !self.genome.mutate(&mut self.rng, &self.context) {
self.metric.number_of_failed_mutations += 1;
return;
}
// println!("#{} Current genome\n{}", iteration, self.genome);
let genome_parsed_program: ParsedProgram = self.genome.to_parsed_program();
if genome_parsed_program.instruction_vec.len() < MINIMUM_PROGRAM_LENGTH {
self.metric.number_of_too_short_programs += 1;
self.reload = true;
return;
}
// Create program from genome
let result_parse = dependency_manager.parse_stage2(
ProgramId::ProgramWithoutId,
&genome_parsed_program
);
let runner: ProgramRunner = match result_parse {
Ok(value) => value,
Err(_error) => {
// debug!("iteration: {} cannot be parsed. {}", iteration, error);
self.metric.number_of_programs_that_cannot_parse += 1;
return;
}
};
// Execute program
self.term_computer.reset();
match self.term_computer.compute(&mut self.cache, &runner, 10) {
Ok(_) => {},
Err(_error) => {
// debug!("iteration: {} cannot be run. {:?}", iteration, error);
self.metric.number_of_compute_errors += 1;
return;
}
}
let terms10: &BigIntVec = &self.term_computer.terms;
// println!("terms10: {:?}", terms10);
if !self.funnel.check10(terms10) {
return;
}
match self.term_computer.compute(&mut self.cache, &runner, 20) {
Ok(_) => {},
Err(_error) => {
// debug!("iteration: {} cannot be run. {:?}", iteration, error);
self.metric.number_of_compute_errors += 1;
return;
}
}
let funnel20result: Option<usize> = self.funnel.check20_with_wildcards(&self.term_computer.terms);
let funnel20_number_of_wildcards: usize;
match funnel20result {
Some(wildcard_count) => {
funnel20_number_of_wildcards = wildcard_count;
},
None => {
// terms is not contained in bloomfilter
return;
}
}
match self.term_computer.compute(&mut self.cache, &runner, 30) {
Ok(_) => {},
Err(_error) => {
// debug!("iteration: {} cannot be run. {:?}", iteration, error);
self.metric.number_of_compute_errors += 1;
return;
}
}
let funnel30result: Option<usize> = self.funnel.check30_with_wildcards(&self.term_computer.terms);
let funnel30_number_of_wildcards: usize;
match funnel30result {
Some(wildcard_count) => {
funnel30_number_of_wildcards = wildcard_count;
},
None => {
// terms is not contained in bloomfilter
return;
}
}
match self.term_computer.compute(&mut self.cache, &runner, 40) {
Ok(_) => {},
Err(_error) => {
// debug!("iteration: {} cannot be run. {:?}", iteration, error);
self.metric.number_of_compute_errors += 1;
return;
}
}
let terms40_original: BigIntVec = self.term_computer.terms.clone();
{
let prevent_flooding = self.prevent_flooding.lock().unwrap();
if prevent_flooding.contains(&terms40_original) {
// debug!("prevented flooding");
self.metric.number_of_prevented_floodings += 1;
self.reload = true;
return;
}
}
let mut funnel40terms: BigIntVec = terms40_original.clone();
let funnel40result: Option<usize> = self.funnel.mut_check40_with_wildcards(&mut funnel40terms);
let funnel40_number_of_wildcards: usize;
match funnel40result {
Some(wildcard_count) => {
funnel40_number_of_wildcards = wildcard_count;
},
None => {
// terms is not contained in bloomfilter
return;
}
}
let terms40_wildcard: &BigIntVec = &funnel40terms;
// Reject, if it's identical to one of the programs that this program depends on
let depends_on_program_ids: HashSet<u32> = self.genome.depends_on_program_ids();
let mut reject_self_dependency = false;
for program_id in &depends_on_program_ids {
let program_runner: Rc::<ProgramRunner> = match dependency_manager.load(*program_id as u64) {
Ok(value) => value,
Err(error) => {
error!("Cannot verify, failed to load program id {}, {:?}", program_id, error);
continue;
}
};
let mut verify_term_computer = TermComputer::new();
match verify_term_computer.compute(&mut self.cache, &program_runner, 40) {
Ok(_) => {},
Err(error) => {
debug!("Cannot verify, unable to run program id {}, {:?}", program_id, error);
continue;
}
}
let verify_terms40: &BigIntVec = &verify_term_computer.terms;
if terms40_original == *verify_terms40 {
// The candidate program seems to be generating the same terms
// as the program that it depends on.
// debug!("Rejecting program with a dependency to itself. {}", program_id);
reject_self_dependency = true;
break;
}
}
if reject_self_dependency {
self.metric.number_of_self_dependencies += 1;
self.reload = true;
return;
}
// lookup in stripped.zip and find the corresponding program_ids
let key: String = terms40_wildcard.to_compact_comma_string();
let corresponding_program_id_set: &HashSet<u32> = match self.terms_to_program_id.get(&key) {
Some(value) => value,
None => {
debug!("Ignoring false-positive in bloomfilter funnel. Could not find the candiate in the oeis stripped file. funnel20_number_of_wildcards: {:?} funnel30_number_of_wildcards: {:?} funnel40_number_of_wildcards: {:?} key: {:?}", funnel20_number_of_wildcards, funnel30_number_of_wildcards, funnel40_number_of_wildcards, key);
self.metric.number_of_bloomfilter_false_positive += 1;
self.reload = true;
return
}
};
let intersection: HashSet<&u32> = depends_on_program_ids.intersection(corresponding_program_id_set).collect();
if !intersection.is_empty() {
debug!("Ignoring self-dependency. There is this intersection: {:?}", intersection);
self.metric.number_of_self_dependencies += 1;
self.reload = true;
return
}
debug!("Found corresponding program_id's: {:?} funnel20_number_of_wildcards: {:?} funnel30_number_of_wildcards: {:?} funnel40_number_of_wildcards: {:?}", corresponding_program_id_set, funnel20_number_of_wildcards, funnel30_number_of_wildcards, funnel40_number_of_wildcards);
let steps: &Vec<u64> = &self.term_computer.steps;
let steps_len: usize = steps.len();
let performance_classifier = PerformanceClassifier::new(10);
let mut maybe_a_new_program = false;
let mut is_existing_program_with_better_performance = false;
let mut priority = ProgramCandidatePriority::Low;
for program_id in corresponding_program_id_set {
if self.context.is_program_id_invalid(*program_id) {
debug!("Keep. Maybe a new program. The program id {} is contained in 'programs_invalid.csv'", program_id);
self.genome.append_message(format!("keep: maybe a new program. The program id {} is contained in 'programs_invalid.csv'", program_id));
maybe_a_new_program = true;
break;
}
let program_runner: Rc::<ProgramRunner> = match dependency_manager.load(*program_id as u64) {
Ok(value) => value,
Err(error) => {
debug!("Keep. Maybe a new program. Cannot verify, failed to load program id {}, {:?}", program_id, error);
self.genome.append_message(format!("keep: maybe a new program. cannot load program {:?} with the same initial terms. error: {:?}", program_id, error));
self.genome.append_message(format!("priority: high"));
maybe_a_new_program = true;
priority = ProgramCandidatePriority::High;
break;
}
};
let mut verify_term_computer = TermComputer::new();
match verify_term_computer.compute(&mut self.cache, &program_runner, 40) {
Ok(_) => {},
Err(error) => {
debug!("Keep. Maybe a new program. Cannot verify, unable to run program id {}, {:?}", program_id, error);
self.genome.append_message(format!("keep: maybe a new program. cannot compute program {:?} with the same initial terms. error: {:?}", program_id, error));
maybe_a_new_program = true;
break;
}
};
let verify_terms40: &BigIntVec = &verify_term_computer.terms;
if terms40_original != *verify_terms40 {
debug!("Ignoring program with different terms. {}", program_id);
continue;
}
if verify_term_computer.steps.len() != steps_len {
error!("verify_term_computer.steps.len() {:?} should be the same as steps_len: {:?}", verify_term_computer.steps.len(), steps_len);
panic!("integrity problem. Length of the computed terms must be the same.");
}
let sum_program0: u64 = self.term_computer.step_count;
let sum_program1: u64 = verify_term_computer.step_count;
if sum_program0 >= sum_program1 {
debug!("Reject. The new program is slower or identical to the old program");
continue;
}
let pcr: PerformanceClassifierResult = performance_classifier.analyze(&steps, &verify_term_computer.steps);
match pcr {
PerformanceClassifierResult::ErrorDifferentInputVectorLengths => {
panic!("integrity problem. Length of the computed terms must be the same.");
},
PerformanceClassifierResult::ErrorTooShortInputVector => {
panic!("integrity problem. The length of the first slice goes beyond the input length");
},
PerformanceClassifierResult::Identical => {
debug!("Reject. Identical performance as the existing program. {:?}", program_id);
continue;
},
PerformanceClassifierResult::NewProgramIsAlwaysFaster => {
debug!("Keep. The new program is always faster than the old program.");
self.genome.append_message(format!("keep: performance NewProgramIsAlwaysFaster than {:?}", program_id));
is_existing_program_with_better_performance = true;
break;
},
PerformanceClassifierResult::NewProgramIsEqualOrFaster => {
debug!("Keep. The new program is faster or similar than the old program.");
self.genome.append_message(format!("keep: performance NewProgramIsEqualOrFaster than {:?}", program_id));
is_existing_program_with_better_performance = true;
break;
},
PerformanceClassifierResult::NewProgramIsAlwaysFasterWhenSkippingTheFirstSlice => {
debug!("Keep. The new program is faster when skipping the first slice");
self.genome.append_message(format!("keep: performance NewProgramIsAlwaysFasterWhenSkippingTheFirstSlice than {:?}", program_id));
is_existing_program_with_better_performance = true;
break;
},
PerformanceClassifierResult::RejectNewProgram => {
debug!("Reject. Worse performance than the existing program. {:?}", program_id);
continue;
}
}
}
let keep_it = maybe_a_new_program || is_existing_program_with_better_performance;
if !keep_it {
debug!("Reject. Worse performance than existing programs.");
self.reload = true;
return;
}
if funnel20_number_of_wildcards > 0 {
self.genome.append_message(format!("funnel20 number of wildcards: {:?}", funnel20_number_of_wildcards));
}
if funnel30_number_of_wildcards > 0 {
self.genome.append_message(format!("funnel30 number of wildcards: {:?}", funnel30_number_of_wildcards));
}
if funnel40_number_of_wildcards > 0 {
self.genome.append_message(format!("funnel40 number of wildcards: {:?}", funnel40_number_of_wildcards));
}
{
let mut prevent_flooding = self.prevent_flooding.lock().unwrap();
if prevent_flooding.try_register(&terms40_original).is_err() {
debug!("already contained in prevent flooding dictionary");
}
}
if self.suppress_low_priority_programs {
if priority == ProgramCandidatePriority::Low {
debug!("suppressing low priority program");
return;
}
}
// Yay, this candidate program seems to be good.
// It's either an entirely new program.
// Or it's faster than the existing program.
// Save a snapshot of this program to `$HOME/.loda-rust/mine-even/`
let mut serializer = ProgramSerializer::new();
serializer.append_comment(terms40_original.to_compact_comma_string());
serializer.append_empty_line();
runner.serialize(&mut serializer);
serializer.append_empty_line();
for message in self.genome.message_vec() {
serializer.append_comment(message);
}
serializer.append_empty_line();
let candidate_program: String = serializer.to_string();
if let Err(error) = save_candidate_program(&self.mine_event_dir, self.iteration, &candidate_program) {
println!("; GENOME\n{}", self.genome);
error!("Unable to save candidate program: {:?}", error);
return;
}
self.metric.number_of_candidate_programs += 1;
match priority {
ProgramCandidatePriority::Low => {
execute_batch_result.increment_number_of_mined_low_prio();
},
ProgramCandidatePriority::High => {
execute_batch_result.increment_number_of_mined_high_prio();
}
}
}
}
#[derive(Debug, PartialEq)]
enum ProgramCandidatePriority {
Low,
High,
}
|