File size: 44,269 Bytes
d5bfab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
structure mcts :> mcts =
struct
open HolKernel Abbrev boolLib aiLib smlParallel psMCTS
mlNeuralNetwork smlExecScripts mlTreeNeuralNetworkAlt kernel bloom
val ERR = mk_HOL_ERR "mcts"
(* -------------------------------------------------------------------------
Globals
------------------------------------------------------------------------- *)
val simple_target = ref []
val use_mkl = ref false
val use_ob = ref false
val use_para = ref false
val dim_glob = ref 64
val ncore = 20 (* 20 *)
val ntarget = 20 * 6 * 2 (* 20 * 12 * 2 *)
(* -------------------------------------------------------------------------
Conversions betwen lists of reals/ints and strings
------------------------------------------------------------------------- *)
fun string_to_real x = valOf (Real.fromString x)
fun ilts x = String.concatWith " " (map its x)
fun stil x = map string_to_int (String.tokens Char.isSpace x)
fun rlts x = String.concatWith " " (map rts x)
fun strl x = map string_to_real (String.tokens Char.isSpace x)
(* -------------------------------------------------------------------------
Parameters
------------------------------------------------------------------------- *)
val target_glob = ref []
val maxbigsteps = 1
val noise_flag = ref false
val noise_coeff_glob = ref 0.1
val nsim_opt = ref (NONE)
val time_opt = ref (SOME 60.0)
fun string_of_timeo () = (case !time_opt of
NONE => "Option.NONE"
| SOME s => "Option.SOME " ^ rts s)
fun spiky_noise () = if random_real () > 0.9 then 1.0 else 0.0
fun uniform_noise () = 1.0
val uniform_flag = ref false
fun random_noise () = random_real ()
fun mctsparam () =
{explo_coeff = 1.0,
noise = !noise_flag, noise_coeff = !noise_coeff_glob,
noise_gen = if !uniform_flag then uniform_noise else random_noise,
nsim = !nsim_opt : int option, time = !time_opt: real option};
val coreid_glob = ref 0
val ngen_glob = ref 0
val in_search = ref false
val embd = ref (dempty Term.compare)
val seqwind = ref (eempty seq_compare)
val progwind = ref (eempty progi_compare)
val progd = ref (eempty progi_compare)
val notprogd = ref (eempty progi_compare)
val semb = ref (BoolArray.fromList [])
val use_semb = ref true
val semd = ref (eempty seq_compare)
val progsemd = ref (eempty seq_compare)
val minid = ref (dempty seq_compare)
val initd = ref (eempty progi_compare)
fun eaddi x d = d := eadd x (!d)
fun ememi x d = emem x (!d)
fun spacetime space tim =
Math.pow (2.0, Real.fromInt space) * Real.fromInt tim
(* -------------------------------------------------------------------------
Main process loging function
------------------------------------------------------------------------- *)
val expname = ref "test"
fun log s =
let val expdir = selfdir ^ "/exp/" ^ !expname in
print_endline s;
append_endline (expdir ^ "/log") s
end
(* -------------------------------------------------------------------------
Type abbreviations
------------------------------------------------------------------------- *)
type seq = kernel.seq
type prog = kernel.prog
type progi = kernel.progi
type tnn = mlTreeNeuralNetworkAlt.tnn
type 'a set = 'a Redblackset.set
(* -------------------------------------------------------------------------
Move
------------------------------------------------------------------------- *)
datatype move = Unit of int | Oper of int * int | Pair
fun postpair b a = (a,b)
val l05 = List.tabulate (6,I)
val movelg_org =
map Unit nullaryidl @
map Oper (map (postpair 0) binaryidl @
map (postpair 1) binaryidl_nocomm) @
map (fn x => Oper (cond_id,x)) l05 @
map (fn x => Oper (loop_id,x)) l05 @
[Pair] @
map (fn x => Oper (compr_id,x)) [0,1]
fun id_of_move m = case m of
Unit id => [id]
| Oper (id,ord) => [id,ord]
| Pair => [1000]
fun move_compare (m1,m2) = seq_compare (id_of_move m1, id_of_move m2)
fun string_of_move m =
let val l = id_of_move m in
if hd l = 1000 then "pair" else
name_of_oper (hd l) ^ "-" ^ String.concatWith "-" (map its (tl l))
end
val movelg = dict_sort move_compare movelg_org
val movev = Vector.fromList movelg
val maxmove = length movelg
val moved = dnew move_compare (number_snd 0 movelg)
fun index_of_move move = dfind move moved
fun move_of_index index = Vector.sub (movev,index)
fun is_unit move = case move of Unit _ => true | _ => false
val movelg_nounit = filter (not o is_unit) movelg
(* -------------------------------------------------------------------------
Build a list of programs
------------------------------------------------------------------------- *)
fun partopt_aux n acc l =
if n <= 0 then SOME (rev acc,l)
else if null l then NONE
else partopt_aux (n - 1) (hd l :: acc) (tl l);
fun partopt n l = partopt_aux n [] l;
fun longereq n l =
if n <= 0 then true else if null l then false else longereq (n-1) (tl l)
(* -------------------------------------------------------------------------
Board
------------------------------------------------------------------------- *)
type clause = int * progi
datatype clausex = C1 of clause | C2 of clause * clause
fun prog_to_clause p = (prog_size p, zip_prog p)
val clause_compare = cpl_compare Int.compare progi_compare
fun prog_compare_size (p1,p2) =
clause_compare (prog_to_clause p1, prog_to_clause p2)
fun equal_clause (a,b) = (clause_compare (a,b) = EQUAL)
fun clausex_compare (a,b) = case (a,b) of
(C1 a', C1 b') => clause_compare (a',b')
| (C1 _ , C2 _ ) => LESS
| (C2 _ , C1 _ ) => GREATER
| (C2 a', C2 b') => cpl_compare clause_compare clause_compare (a',b')
fun string_of_clause clause = humanf (unzip_prog (snd clause))
fun string_of_clausex clausex = case clausex of
C1 a => string_of_clause a
| C2 (a,b) => "(pair " ^ string_of_clause a ^ " " ^ string_of_clause b ^ ")"
type board = clausex list
type player = (board,move) psMCTS.player
fun string_of_board (board : board) =
"# " ^ String.concatWith "\n# " (map string_of_clausex board)
fun board_compare (a,b) = list_compare clausex_compare (a,b)
(* -------------------------------------------------------------------------
Permutation of arguments
------------------------------------------------------------------------- *)
fun permute_triple n (a,b,c) =
if n = 0 then SOME (a,b,c) else
if n = 1 then (if equal_clause (c,b) then NONE else SOME (a,c,b)) else
if n = 2 then (if equal_clause (b,a) then NONE else SOME (b,a,c)) else
if n = 3 then (if equal_clause (c,a) then NONE else SOME (b,c,a)) else
if n = 4 then (if equal_clause (c,a) then NONE else SOME (c,a,b)) else
if n = 5 then (if equal_clause (c,b) orelse equal_clause (b,a)
then NONE else SOME (c,b,a))
else raise ERR "permute_triple" ""
fun permute_double n (a,b) =
if n = 0 then SOME (a,b) else
if n = 1 then (if equal_clause (a,b) then NONE else SOME (b,a))
else raise ERR "permute_double" ""
(* -------------------------------------------------------------------------
Application of a move to a board
------------------------------------------------------------------------- *)
val complexity_compare = cpl_compare Real.compare progi_compare
fun update_minid p (leafn,pi) (sem,tim) =
let
val rep = dfind sem (!minid)
val newrep = (spacetime leafn tim, pi)
in
if complexity_compare (newrep,rep) = LESS
then minid := dadd sem newrep (!minid)
else ()
end
handle NotFound => ()
fun update_wind p pi sem =
let
val winseql = find_wins p sem
val b = ref false
fun f x = if not (ememi x seqwind)
then (eaddi x seqwind; b := true) else ()
in
app f winseql;
if !b then eaddi pi progwind else ()
end
exception ResultP of prog;
fun check_simple_target p =
let
val f = mk_exec p
fun test (x,e) = fst (f(x,0)) = e handle Div => false
fun loop i maxn =
if i >= maxn then NONE else
if all test (number_fst i (!simple_target))
then SOME (shift_prog i p)
else loop (i+1) maxn
in
loop 0 16
end
fun raise_simple_target p = case check_simple_target p of
SOME newp => raise ResultP newp
| NONE => ()
fun is_incr newc board = case board of
C1 c :: m => clause_compare (newc,c) <> GREATER
| C2 (c,_) :: m => clause_compare (newc,c) <> GREATER
| [] => true
fun exec_fun_insearch p (leafn,pi) plb =
if ememi pi progd then SOME (C1 (leafn,pi) :: plb)
else if ememi pi notprogd then NONE
else (* unseen program *)
case semtimo_of_prog p of
NONE => (eaddi pi notprogd; NONE)
| SOME (sem,tim) =>
(
if !simple_search then raise_simple_target p else ();
update_minid p (leafn,pi) (sem,tim);
if not (ememi pi initd) andalso
(if !use_semb then bmem sem (!semb) else ememi sem semd)
then (eaddi pi notprogd; NONE)
else (* unseen sequence *)
(
if not (!simple_search) then update_wind p pi sem else ();
eaddi pi progd;
(if !use_semb then badd sem (!semb) else eaddi sem semd);
SOME (C1 (leafn,pi) :: plb)
)
)
val check_order = ref true
fun exec_fun p leafn plb =
let val pi = zip_prog p in
if !check_order andalso not (is_incr (leafn,pi) plb) then NONE
else if !in_search
then exec_fun_insearch p (leafn,pi) plb
else SOME (C1 (leafn,pi) :: plb)
end
fun apply_moveo move board = case move of
Unit id => exec_fun (papp_nullop id) 1 board
| Oper (id,ord) =>
(case partopt 2 board of NONE => NONE | SOME (pla,plb) =>
(case pla of
[C1 cb, C1 ca] =>
if not (is_binary id) andalso not (id = compr_id) then NONE else
let val doubleo = permute_double ord (ca,cb) in
case doubleo of NONE => NONE | SOME ((na,pia),(nb,pib)) =>
let
val (pa,pb) = (unzip_prog pia,unzip_prog pib)
val p = papp_binop id (pa,pb)
in
if id = compr_id andalso depend_on_i pa then NONE else
exec_fun p (na + nb) plb
end
end
| [C1 cc, C2 (cb,ca)] =>
if not (mem id [cond_id,loop_id]) then NONE else
let val tripleo = permute_triple ord (ca,cb,cc) in
case tripleo of NONE => NONE | SOME ((na,pia),(nb,pib),(nc,pic)) =>
let val p = papp_ternop id
(unzip_prog pia, unzip_prog pib, unzip_prog pic)
in
exec_fun p (na + nb + nc) plb
end
end
| _ => NONE
))
| Pair =>
(case partopt 2 board of NONE => NONE | SOME (pla,plb) =>
(case pla of
[C1 ca, C1 cb] => SOME (C2 (ca,cb) :: plb)
| _ => NONE))
fun apply_move move board = valOf (apply_moveo move board)
handle Option => raise ERR "apply_move" ""
(* -------------------------------------------------------------------------
Available moves
------------------------------------------------------------------------- *)
fun leafn_of_clausex cx = case cx of
C1 a => fst a
| C2 (a,b) => fst a + fst b
fun leafn_of_board board = sum_int (map leafn_of_clausex board)
fun is_extendable_aux board = case board of
C1 a :: m =>
(#1 a >= leafn_of_board m + 1 andalso is_extendable_aux m)
| C2 (a,b) :: m =>
(#1 a >= leafn_of_board m + 1 andalso is_extendable_aux m)
| _ => true
fun is_extendable board = is_extendable_aux (rev board)
fun available_move board move = isSome (apply_moveo move board)
fun available_movel board =
filter (available_move board)
(if is_extendable board then movelg else movelg_nounit)
(* -------------------------------------------------------------------------
For debugging
------------------------------------------------------------------------- *)
fun random_step board =
apply_move (random_elem (available_movel board)) board
fun random_board n = funpow n random_step []
handle Interrupt => raise Interrupt
| _ => random_board n
fun random_prog n = case last (random_board n) of
C1 c => unzip_prog (snd c)
| _ => random_prog n
fun apply_movel movel board = foldl (uncurry apply_move) board movel
(* -------------------------------------------------------------------------
Board status (all the checking/caching is done during apply move now)
------------------------------------------------------------------------- *)
fun status_of (board : board) = Undecided
(* -------------------------------------------------------------------------
Game
------------------------------------------------------------------------- *)
val game : (board,move) game =
{
status_of = status_of,
available_movel = available_movel,
apply_move = apply_move,
string_of_board = string_of_board,
string_of_move = string_of_move,
board_compare = board_compare,
move_compare = move_compare,
movel = movelg
}
(* -------------------------------------------------------------------------
Represent board as a term to give to the TNN
------------------------------------------------------------------------- *)
val alpha2 = rpt_fun_type 2 alpha
val alpha3 = rpt_fun_type 3 alpha
(* encoding sequences *)
val natbase = 10
val nat_cat = mk_var ("nat_cat", alpha3);
val nat_neg = mk_var ("nat_neg", alpha2);
val nat_big = mk_var ("nat_big", alpha);
fun embv_nat i = mk_var ("nat" ^ its i,alpha);
val natoperl = List.tabulate (natbase,embv_nat) @ [nat_cat,nat_neg,nat_big];
fun term_of_nat n =
if n < 0 then mk_comb (nat_neg, term_of_nat (~ n))
else if n > 1000000 then nat_big
else if n < natbase then embv_nat n
else list_mk_comb (nat_cat,
[embv_nat (n mod natbase), term_of_nat (n div natbase)])
val seq_empty = mk_var ("seq_empty", alpha);
val seq_cat = mk_var ("seq_cat", alpha3);
fun term_of_seq seq = case seq of
[] => seq_empty
| a :: m => list_mk_comb
(seq_cat, [term_of_nat a, term_of_seq m]);
val seqoperl = natoperl @ [seq_empty,seq_cat]
(* faking two layers *)
fun cap_tm tm =
let val name = fst (dest_var tm) in
mk_var ("cap_" ^ name,alpha2)
end
fun is_capped tm =
let val name = fst (dest_var (fst (strip_comb tm))) in
String.isPrefix "cap_" name
end
fun cap_opt tm =
if arity_of tm <= 0
then NONE
else SOME (cap_tm tm)
fun cap tm =
let val oper = fst (strip_comb tm) in
mk_comb (cap_tm oper, tm)
end
(* syntactic *)
fun term_of_prog (Ins (id,pl)) =
if null pl then Vector.sub (operv,id) else
cap (list_mk_comb (Vector.sub (operv,id), map term_of_prog pl))
(* stack *)
val pair_cat = mk_var ("pair_cat",alpha3);
val stack_empty = mk_var ("stack_empty", alpha);
val stack_cat = mk_var ("stack_cat", alpha3);
fun term_of_clause clause = term_of_prog (unzip_prog (snd clause))
fun term_of_clausex clausex = case clausex of
C1 clause => term_of_clause clause
| C2 (a,b) =>
cap (list_mk_comb (pair_cat, [term_of_clause a,term_of_clause b]))
fun term_of_stack_aux board = case board of
[] => stack_empty
| a :: m =>
cap (list_mk_comb (stack_cat, [term_of_clausex a,term_of_stack_aux m]));
val pair_progseq = mk_var ("pair_progseq", alpha3);
fun term_of_stack board =
list_mk_comb (pair_progseq,
[term_of_stack_aux board, cap (term_of_seq (first_n 8 (!target_glob)))])
(* policy head *)
val prepoli = mk_var ("prepoli",alpha2)
val head_poli = mk_var ("head_poli", alpha2)
fun term_of_board board = mk_comb (head_poli,
mk_comb (prepoli, term_of_stack board))
(* embedding dimensions *)
val operl = vector_to_list operv @ [stack_empty,stack_cat,pair_cat]
val operlcap = operl @ List.mapPartial cap_opt operl
val seqoperlcap = seqoperl @ [cap_tm seq_cat, cap_tm seq_empty]
val allcap = [pair_progseq] @ operlcap @ seqoperlcap
val operlext = allcap @ [prepoli,head_poli]
val opernd = dnew Term.compare (number_snd 0 operlext)
fun dim_std_alt oper =
if arity_of oper = 0
then [0,!dim_glob]
else [!dim_glob * arity_of oper, !dim_glob]
fun get_tnndim () =
map_assoc dim_std_alt allcap @
[(prepoli,[!dim_glob,!dim_glob]),(head_poli,[!dim_glob,maxmove])]
(* -------------------------------------------------------------------------
OpenBlas Foreign Function Interface
Be aware that using it (use_ob := true + installing openblas)
creates a difficult to reproduce bug.
------------------------------------------------------------------------- *)
fun fp_op_default oper embl = Vector.fromList [100.0]
val fp_op_glob = ref fp_op_default
val biais = Vector.fromList ([1.0])
local open Foreign in
fun update_fp_op () =
let
val lib = loadLibrary (selfdir ^ "/tnn_in_c/ob.so");
val fp_op_sym = getSymbol lib "fp_op";
val cra = cArrayPointer cDouble;
val fp_op0 = buildCall3 (fp_op_sym,(cLong,cra,cra),cVoid);
fun fp_op oper embl =
let
val n = dfind oper opernd
val Xv = Vector.concat (embl @ [biais])
val X = Array.tabulate (Vector.length Xv, fn i => Vector.sub (Xv,i))
val Y = Array.tabulate (!dim_glob,fn i => 0.0)
in
fp_op0 (n,X,Y);
Array.vector Y
end
in
fp_op_glob := fp_op
end
end (* local *)
(* -------------------------------------------------------------------------
Create the sequence of moves that would produce a program p
------------------------------------------------------------------------- *)
fun inv_cmp cmp (a,b) = cmp (b,a)
fun commute (Ins (oper,argl)) =
if is_comm oper
then Ins (oper, dict_sort (inv_cmp prog_compare_size) (map commute argl))
else Ins (oper, map commute argl)
fun is_appsyn target prev move =
case apply_moveo move prev of (* extendable not tested here *)
NONE => false
| SOME (C1 clause :: m) => equal_prog (target,unzip_prog (snd clause))
| _ => false
fun invapp_move board = case board of
[] => NONE
| C1 topclause :: m =>
let val target = unzip_prog (snd topclause) in
case target of
Ins (_,[]) =>
let
val prev = m
val move = valOf (List.find (is_appsyn target prev) movelg)
handle Option => raise ERR "invapp_move" (humanf target)
in
SOME (prev, move)
end
| Ins (_,[p1,p2]) =>
let
val argl = dict_sort clause_compare (map prog_to_clause [p1,p2])
val prev = map C1 argl @ m
val move = valOf (List.find (is_appsyn target prev) movelg)
handle Option =>
(
print_endline (string_of_board board);
print_endline (string_of_board prev);
print_endline (humanf p1 ^ " " ^ humanf p2);
raise ERR "invapp_move" (string_of_board board)
)
in
SOME (prev, move)
end
| Ins (_,[p1,p2,p3]) =>
let
val (c1,c2,c3) = triple_of_list
(dict_sort clause_compare (map prog_to_clause [p1,p2,p3]))
val prev = C1 c1 :: C2 (c2,c3) :: m
val move = valOf (List.find (is_appsyn target prev) movelg)
handle Option => raise ERR "invapp_move" (humanf target)
in
SOME (prev, move)
end
| _ => raise ERR "invapp_move" "unexpected"
end
| C2 (ca,cb) :: m => SOME (C1 ca :: C1 cb :: m, Pair)
fun linearize_aux acc board = case invapp_move board of
SOME (prev,move) => linearize_aux ((prev,move) :: acc) prev
| NONE => acc
fun linearize p = linearize_aux [] [C1 (prog_to_clause p)]
(* -------------------------------------------------------------------------
Merging solutions from searches with different semantic quotient
------------------------------------------------------------------------- *)
exception Rewrite of prog;
fun rewrite_merge repd (p as Ins (id,pl)) =
let
val sem = sem_of_prog p
handle Option => raise Rewrite p
val newp = dfind sem (!repd) handle NotFound =>
let
val newpl = map (rewrite_merge repd) pl
val newptemp = Ins (id,newpl)
in
repd := dadd sem newptemp (!repd);
newptemp
end
in
newp
end
fun rewrite_winl winl =
let
val i = ref 0
val repd = ref (dempty seq_compare)
fun f p =
let val newp = commute (rewrite_merge repd p) in
if depend_on_i newp then NONE
else if equal_prog (p,newp) then SOME newp
else if same_sem newp p then (incr i; SOME newp) else NONE
end
handle Rewrite x => (log ("rewrite_winl: " ^ humanf x); NONE)
val r = List.mapPartial f winl
in
(r,!i)
end
fun find_minirep_aux pl =
let
val psemtiml = map_assoc (valOf o semtimo_of_prog) pl
handle Option => raise ERR "find_minirep" ""
val repd = ref (dempty seq_compare)
fun f (p,(sem,tim)) =
let
val winl = find_wins p sem
val r = spacetime (prog_size p) tim
val pi = zip_prog p
val new = (r,pi)
fun g seq =
let val old = dfind seq (!repd) in
if complexity_compare (new,old) = LESS
then repd := dadd seq new (!repd)
else ()
end
handle NotFound => repd := dadd seq new (!repd)
in
app g winl
end
in
app f psemtiml;
(dlist (!repd))
end
fun find_minirep_merge pl =
map (unzip_prog o snd o snd) (find_minirep_aux pl)
fun find_minirep_train pl =
let
val l = find_minirep_aux pl
fun f (seq,(_,pi)) = (seq, unzip_prog pi)
in
map f l
end
fun merge_sol pl =
let
val _ = log ("all solutions (past + concurrent): " ^ its (length pl))
val plmini = find_minirep_merge pl
val pl0 = dict_sort prog_compare_size plmini
val _ = log ("smallest representants: " ^ its (length pl0))
val (pl1,n1) = rewrite_winl pl0
val _ = log ("rewritten solutions: " ^ its (length pl1) ^ " " ^ its n1)
in
pl1
end
(* -------------------------------------------------------------------------
Merge examples from different solutions
------------------------------------------------------------------------- *)
fun regroup_ex bml =
let fun f ((board,move),d) =
let
val oldv = dfind board d handle NotFound =>
(Vector.tabulate (maxmove, fn _ => 0))
val movei = index_of_move move
val newv = Vector.update (oldv, movei, Vector.sub (oldv,movei) + 1)
in
dadd board newv d
end
in
foldl f (dempty board_compare) bml
end
fun pol_of_progl pold board =
normalize_proba (map Real.fromInt (vector_to_list (dfind board pold)))
fun create_ex pold (board,_) =
(term_of_board board, pol_of_progl pold board)
fun create_exl seqprogl =
let
val zerov = Vector.tabulate (maxmove, fn _ => 0.0)
fun f (seq,p) =
let
val _ = target_glob := seq
val bml = linearize p
fun g (board,move) =
let
val movei = index_of_move move
val newv = Vector.update (zerov, movei, 1.0)
val newl = vector_to_list newv
in
(term_of_board board, newl)
end
in
map g bml
end
val r = map f seqprogl
val _ = print_endline "examples created"
in
r
end
(* -------------------------------------------------------------------------
Export examples to C
------------------------------------------------------------------------- *)
fun order_subtm tml =
let
val d = ref (dempty (cpl_compare Int.compare Term.compare))
fun traverse tm =
let
val (oper,argl) = strip_comb tm
val nl = map traverse argl
val n = 1 + sum_int nl
in
d := dadd (n, tm) () (!d); n
end
val subtml = (app (ignore o traverse) tml; dkeys (!d))
in
map snd subtml
end;
val empty_sobj = rlts (List.tabulate (!dim_glob, fn _ => 9.0))
fun linearize_ex tmobjl =
let
val objd = dnew Term.compare tmobjl
val subtml = order_subtm (map fst tmobjl);
val indexd = dnew Term.compare (number_snd 0 subtml);
fun enc_sub x =
let val (oper,argl) = strip_comb x in
dfind oper opernd :: map (fn x => dfind x indexd) argl
end
fun enc_obj x = dfind x objd handle NotFound => []
fun pad_sub l =
ilts (l @ List.tabulate (4 - length l, fn _ => 99))
fun pad_obj l =
if null l then empty_sobj else
rlts (l @ List.tabulate (!dim_glob - length l, fn _ => 9.0))
in
(String.concatWith " " (map (pad_sub o enc_sub) subtml),
String.concatWith " " (map (pad_obj o enc_obj) subtml),
length subtml
)
end;
fun export_traindata ex =
let
val datadir = selfdir ^ "/tnn_in_c/data"
val _ =
(
erase_file (datadir ^ "/arg.txt");
erase_file (datadir ^ "/dag.txt");
erase_file (datadir ^ "/obj.txt");
erase_file (datadir ^ "/size.txt");
erase_file (datadir ^ "/arity.txt");
erase_file (datadir ^ "/head.txt")
)
val noper = length operlext
val tmobjll = ex
val nex = length tmobjll
val (dagl,objl,sizel) = split_triple (map linearize_ex tmobjll);
fun find_head tm = if term_eq tm head_poli then maxmove else 0
in
writel (datadir ^ "/arg.txt") (map its [noper,nex,!dim_glob]);
writel (datadir ^ "/dag.txt") dagl;
writel (datadir ^ "/obj.txt") objl;
writel (datadir ^ "/size.txt") (map its sizel);
writel (datadir ^ "/arity.txt") (map (its o arity_of) operlext);
writel (datadir ^ "/head.txt") (map (its o find_head) operlext)
end
(* -------------------------------------------------------------------------
TNN cache
------------------------------------------------------------------------- *)
fun fp_emb_either tnn oper newembl =
(* if !use_ob andalso !ngen_glob > 0
then (!fp_op_glob) oper newembl
else *) fp_emb tnn oper newembl
fun infer_emb_cache tnn tm =
if is_capped tm
then
(
Redblackmap.findKey (!embd,tm) handle NotFound =>
let
val (oper,argl) = strip_comb tm
val embl = map (infer_emb_cache tnn) argl
val (newargl,newembl) = split embl
val emb = fp_emb_either tnn oper newembl
val newtm = list_mk_comb (oper,newargl)
in
embd := dadd newtm emb (!embd);
(newtm,emb)
end
)
else
let
val (oper,argl) = strip_comb tm
val embl = map (infer_emb_cache tnn) argl
val (newargl,newembl) = split embl
val emb = fp_emb_either tnn oper newembl
in
(tm,emb)
end
(* -------------------------------------------------------------------------
Players
------------------------------------------------------------------------- *)
fun rewardf board = 0.0
fun player_uniform tnn board =
(0.0, map (fn x => (x,1.0)) (available_movel board))
fun player_wtnn tnn board =
let
val rl = infer_tnn tnn [term_of_board board]
val pol1 = Vector.fromList (snd (singleton_of_list rl))
val amovel = available_movel board
val pol2 = map (fn x => (x, Vector.sub (pol1, index_of_move x))) amovel
in
(rewardf board, pol2)
end
fun player_wtnn_cache tnn board =
let
val _ = if dlength (!embd) > 1000000
then embd := dempty Term.compare else ()
val preboarde = snd (infer_emb_cache tnn (term_of_stack board))
val prepolie = fp_emb_either tnn prepoli [preboarde]
val pol1 = Vector.fromList (descale_out (fp_emb_either tnn head_poli
[prepolie]))
val amovel = available_movel board
val pol2 = map (fn x => (x, Vector.sub (pol1, index_of_move x))) amovel
in
(rewardf board, pol2)
end
(* -------------------------------------------------------------------------
Search
------------------------------------------------------------------------- *)
val player_glob = ref player_wtnn_cache
fun mctsobj tnn =
{game = game, mctsparam = mctsparam (), player = !player_glob tnn};
fun tree_size tree = case tree of
Leaf => 0
| Node (node,ctreev) => 1 +
sum_int (map (tree_size o #3) (vector_to_list ctreev))
(* -------------------------------------------------------------------------
Parallelization of the search
------------------------------------------------------------------------- *)
local open HOLsexp in
fun enc_prog (Ins x) = pair_encode (Integer, list_encode enc_prog) x
val enc_progl = list_encode enc_prog
fun dec_prog t =
Option.map Ins (pair_decode (int_decode, list_decode dec_prog) t)
val dec_progl = list_decode dec_prog
end
fun write_result file r = write_data enc_progl file r
fun read_result file = read_data dec_progl file
(* -------------------------------------------------------------------------
Reinforcement learning loop utils
------------------------------------------------------------------------- *)
fun tnn_file ngen = selfdir ^ "/exp/" ^ !expname ^ "/tnn" ^ its ngen
fun sold_file ngen = selfdir ^ "/exp/" ^ !expname ^ "/sold" ^ its ngen
fun get_expdir () = selfdir ^ "/exp/" ^ !expname
fun mk_dirs () =
let val expdir = selfdir ^ "/exp/" ^ !expname in
mkDir_err (selfdir ^ "/exp");
mkDir_err expdir;
mkDir_err (selfdir ^ "/parallel_search");
expdir
end
fun update_sold ((seq,prog),sold) =
let
val oldprog = dfind seq sold
in
if prog_compare_size (prog,oldprog) = LESS
then dadd seq prog sold
else sold
end
handle NotFound => dadd seq prog sold
fun write_sold ngen tmpname d =
(
write_result (sold_file ngen ^ tmpname) (elist d);
write_result (sold_file ngen) (elist d)
)
fun read_sold ngen = enew prog_compare (read_result (sold_file ngen))
(* -------------------------------------------------------------------------
training
------------------------------------------------------------------------- *)
val ncoretrain = 4
val schedule =
[
{ncore = ncoretrain, verbose = true, learning_rate = 0.03,
batch_size = 16, nepoch = 40},
{ncore = ncoretrain, verbose = true, learning_rate = 0.02,
batch_size = 16, nepoch = 10},
{ncore = ncoretrain, verbose = true, learning_rate = 0.01,
batch_size = 16, nepoch = 10},
{ncore = ncoretrain, verbose = true, learning_rate = 0.007,
batch_size = 16, nepoch = 10},
{ncore = ncoretrain, verbose = true, learning_rate = 0.005,
batch_size = 16, nepoch = 10}
];
fun read_mat acc sl = case sl of
[] => (rev acc, [])
| "A" :: m => (rev acc, sl)
| x :: m =>
let
val line1 = strl x
val line2 = last line1 :: butlast line1
val line = Vector.fromList line2
in
read_mat (line :: acc) m
end
fun read_cmatl sl = case sl of
[] => []
| "A" :: m =>
let
val (mat1,cont) = read_mat [] m
val w1 = Vector.fromList mat1
in
(
if Vector.length (Vector.sub (w1,0)) = 1
then
[{a = mlNeuralNetwork.idactiv,
da = mlNeuralNetwork.didactiv,
w = w1}]
else
[{a = mlNeuralNetwork.tanh,
da = mlNeuralNetwork.dtanh,
w = w1}]
)
:: read_cmatl cont
end
| x :: m => raise ERR "read_cmatl" x
fun read_ctnn sl = case sl of
[] => raise ERR "read_ctnn" ""
| "START MATRICES" :: m => read_cmatl m
| a :: m => read_ctnn m
fun read_ctnn_fixed () =
let val matl = read_ctnn (readl (selfdir ^ "/tnn_in_c/tnn")) in
dnew Term.compare (combine (operlext,matl))
end
fun trainf tmpname =
let
val sold = read_sold (!ngen_glob)
val seqpl = find_minirep_train (elist sold)
val ex = create_exl (shuffle seqpl)
in
if !use_mkl then
let
val cfile = tnn_file (!ngen_glob) ^ tmpname ^ "_C"
val sbin = if !use_para then "./tree_para" else "./tree"
val _=
(
print_endline "exporting training data";
export_traindata ex;
print_endline "exporting end";
OS.Process.sleep (Time.fromReal 1.0);
cmd_in_dir (selfdir ^ "/tnn_in_c")
(sbin ^ " > " ^ cfile)
)
val _ = OS.Process.sleep (Time.fromReal 1.0)
(* val _ = if !use_ob then
cmd_in_dir (selfdir ^ "/tnn_in_c") ("sh compile_ob.sh")
else () *)
val matl = read_ctnn (readl cfile)
val tnn = dnew Term.compare (combine (operlext,matl))
in
write_tnn (tnn_file (!ngen_glob) ^ tmpname) tnn;
write_tnn (tnn_file (!ngen_glob)) tnn
end
else
let
val tnndim = get_tnndim ()
val (tnn,t) = add_time (train_tnn schedule (random_tnn tnndim))
(part_pct 1.0 (shuffle ex))
in
write_tnn (tnn_file (!ngen_glob) ^ tmpname) tnn;
write_tnn (tnn_file (!ngen_glob)) tnn
end
end
fun wrap_trainf ngen tmpname =
let
val scriptfile = !buildheap_dir ^ "/train.sml"
val makefile = !buildheap_dir ^ "/Holmakefile"
in
writel makefile ["INCLUDES = " ^ selfdir];
writel scriptfile
["open mcts;",
"expname := " ^ mlquote (!expname) ^ ";",
"smlExecScripts.buildheap_dir := " ^ mlquote (!buildheap_dir) ^ ";",
"mcts.ngen_glob := " ^ its (!ngen_glob) ^ ";",
"mcts.dim_glob := " ^ its (!dim_glob) ^ ";",
"mcts.use_mkl := " ^ bts (!use_mkl) ^ ";",
"mcts.use_para := " ^ bts (!use_para) ^ ";",
"mcts.use_ob := " ^ bts (!use_ob) ^ ";",
"bloom.init_od ();",
"trainf " ^ mlquote tmpname];
exec_script scriptfile
end
(* -------------------------------------------------------------------------
Minimizing solutions using an initialized minid
------------------------------------------------------------------------- *)
fun minimize p =
let
val sem = sem_of_prog p
handle Option => raise ERR "minimize" ""
val (Ins (id,pl)) = (unzip_prog o snd o (dfind sem)) (!minid)
handle NotFound => p
in
Ins (id, map minimize pl)
end
fun minimize_winl winl =
let
val i = ref 0
fun f p =
if not (is_executable p) then raise ERR "minimize_winl" (humanf p) else
let val newp = commute (minimize p) in
if equal_prog (p,newp) orelse depend_on_i newp then p
else if same_sem newp p then (incr i; newp) else p
end
val r = map f winl
in
(r,!i)
end
(* -------------------------------------------------------------------------
Initialized dictionaries with previous solutions and their subterms
------------------------------------------------------------------------- *)
fun zerob b =
let
val n = BoolArray.length b
fun loop i =
if i >= n then () else
(BoolArray.update (b,i,false); loop (i+1))
in
loop 0
end
val use_cache = ref false
fun init_dicts pl =
let
val _ = if not (!use_cache) then () else
let val plsol = List.mapPartial check_simple_target pl in
if null plsol then () else
raise ResultP (hd (dict_sort prog_compare_size plsol))
end
val pil = map zip_prog pl
val psemtiml = map_assoc (valOf o semtimo_of_prog) pl
handle Option => raise ERR "init_dicts" ""
val seml = map (fst o snd) psemtiml
fun g (p,(sem,tim)) =
(sem, (spacetime (prog_size p) tim, zip_prog p))
in
progd := eempty progi_compare;
notprogd := eempty progi_compare;
if !use_semb then (semb := BoolArray.tabulate (bmod, fn _ => false);
zerob (!semb)) else semd := eempty seq_compare;
embd := dempty Term.compare;
seqwind := eempty seq_compare;
progwind := eempty progi_compare;
initd := enew progi_compare pil;
minid := dnew seq_compare (map g psemtiml)
end
(* -------------------------------------------------------------------------
Main search function
------------------------------------------------------------------------- *)
val wnoise_flag = ref false
fun search tnn coreid =
let
val _ = print_endline "initialization"
val _ = coreid_glob := coreid
val _ = player_glob := player_wtnn_cache
val sold = if !ngen_glob <= 0
then eempty prog_compare
else read_sold (!ngen_glob - 1)
val _ = noise_flag := false
val _ = if !coreid_glob mod 2 = 0
then (noise_flag := true; noise_coeff_glob := 0.1) else ()
val (targetseq,seqnamel) = random_elem (dlist (!odname_glob))
val _ = target_glob := targetseq
val _ = print_endline
("target: " ^ String.concatWith "-" seqnamel ^ ": " ^
string_of_seq (!target_glob));
val _ = init_dicts (elist sold)
val _ = print_endline "start search"
val _ = in_search := true
val _ = avoid_lose := true
val tree = starting_tree (mctsobj tnn) []
val (newtree,t) = add_time (mcts (mctsobj tnn)) tree
val _ = print_endline "end search"
val n = tree_size newtree
val _ = avoid_lose := false
val _ = in_search := false
val winl = map unzip_prog (elist (!progwind))
val (minwinl,minn) = minimize_winl winl
val _ = if emem (!target_glob) (!seqwind)
then print_endline "target acquired"
else print_endline "target missed"
in
print_endline ("search time: " ^ rts_round 2 t ^ " seconds");
print_endline ("tree_size: " ^ its n);
print_endline ("prog sol: " ^ its (elength (!progwind)));
print_endline ("prog mini: " ^ its minn);
print_endline ("seq sol: " ^ its (elength (!seqwind)));
minwinl
end
val parspec : (tnn,int,prog list) extspec =
{
self_dir = selfdir,
self = "mcts.parspec",
parallel_dir = selfdir ^ "/parallel_search",
reflect_globals = (fn () => "(" ^
String.concatWith "; "
["bloom.init_od ()",
"smlExecScripts.buildheap_dir := " ^ mlquote (!buildheap_dir),
"mcts.expname := " ^ mlquote (!expname),
"mcts.ngen_glob := " ^ its (!ngen_glob),
"mcts.coreid_glob := " ^ its (!coreid_glob),
"mcts.dim_glob := " ^ its (!dim_glob),
"mcts.time_opt := " ^ string_of_timeo (),
"mcts.use_ob := " ^ bts (!use_ob)
]
^ ")"),
function = search,
write_param = write_tnn,
read_param = read_tnn,
write_arg = let fun f file arg = writel file [its arg] in f end,
read_arg = let fun f file = string_to_int (hd (readl file)) in f end,
write_result = write_result,
read_result = read_result
}
fun search_target_aux (tnn,sold) tim target =
let
val _ = simple_search := true
val _ = time_opt := SOME tim;
val _ = player_glob := player_wtnn_cache
val _ = simple_target := target
val _ = target_glob := target
val _ = debug "init dicts"
val _ = init_dicts (elist sold)
val _ = in_search := true
val _ = avoid_lose := true
val tree = starting_tree (mctsobj tnn) []
val _ = debug "start search"
val (newtree,t) = add_time (mcts (mctsobj tnn)) tree
val _ = avoid_lose := false
val _ = in_search := false
in
NONE
end
handle ResultP p => (debug (humanf p); SOME (minimize p))
fun parsearch_target tim target =
let
val tnn = read_tnn (selfdir ^ "/main_tnn")
val sold = enew prog_compare (read_result (selfdir ^ "/main_sold"))
val (p,t) = add_time (search_target_aux (tnn,sold) tim) target
in
(true,humanf (valOf p),t) handle Option => (false, "", t)
end
val partargetspec : (real, seq, bool * string * real) extspec =
{
self_dir = selfdir,
self = "mcts.partargetspec",
parallel_dir = selfdir ^ "/parallel_search",
reflect_globals = (fn () => "(" ^
String.concatWith "; "
["smlExecScripts.buildheap_dir := " ^ mlquote (!buildheap_dir),
"bloom.init_od ()",
"mcts.use_semb := " ^ bts (!use_semb),
"mcts.use_ob := " ^ bts (!use_ob)]
^ ")"),
function = parsearch_target,
write_param = let fun f file param = writel file [rts param] in f end,
read_param = let fun f file = string_to_real (hd (readl file)) in f end,
write_arg = let fun f file arg = writel file [ilts arg] in f end,
read_arg = let fun f file = stil (hd (readl file)) in f end,
write_result = let fun f file (b,s,t) = writel file [bts b, s, rts t]
in f end,
read_result = let fun f file =
let val (s1,s2,s3) = triple_of_list (readl file) in
(string_to_bool s1, s2, string_to_real s3)
end
in f end
}
fun parsearch_targetl ncore tim targetl =
(
buildheap_options := "--maxheap 10000";
parmap_queue_extern ncore partargetspec tim targetl
)
(* -------------------------------------------------------------------------
Statistics
------------------------------------------------------------------------- *)
fun human_progseq p =
let
val seq = seq_of_prog p
val seql = find_wins p seq
val _ = if null seql
then log ("Error: human_progseq 1: " ^ (humanf p)) else ()
fun f x = String.concatWith "-" (dfind x (!odname_glob)) ^ ": " ^
String.concatWith " " (map its x)
in
humanf p ^ "\n" ^ String.concatWith "\n" (map f seql)
end
handle Interrupt => raise Interrupt | _ =>
(log ("Error: human_progseq 2: " ^ (humanf p)); "")
fun human_progfreq (prog,freq) = its freq ^ ": " ^ humanf prog;
fun compute_freq f sol1 =
let val freql = dlist
(count_dict (dempty prog_compare) (List.concat (map f sol1)))
in
dict_sort compare_imax freql
end
fun stats_sol prefix sol =
let
val solsort = dict_sort prog_compare_size sol
val freql1 = compute_freq all_subprog sol
val freql2 = compute_freq under_lambda sol
in
polynorm_flag := false;
writel (prefix ^ "prog") (map human_progseq solsort);
writel (prefix ^ "freq") (map human_progfreq freql1);
writel (prefix ^ "freqlam") (map human_progfreq freql2);
polynorm_flag := true;
writel (prefix ^ "prog_poly") (map human_progseq solsort);
writel (prefix ^ "freq_poly") (map human_progfreq freql1);
writel (prefix ^ "freqlam_poly") (map human_progfreq freql2)
end
fun stats_ngen dir ngen =
let
val solprev =
if ngen = 0 then [] else #read_result parspec (sold_file (ngen - 1))
val solnew = #read_result parspec (sold_file ngen)
val prevd = enew prog_compare solprev
val soldiff = filter (fn x => not (emem x prevd)) solnew
in
stats_sol (dir ^ "/full_") solnew;
stats_sol (dir ^ "/diff_") soldiff
end
handle Interrupt => raise Interrupt | _ => log ("Error: stats_ngen")
(* -------------------------------------------------------------------------
Reinforcement learning loop
------------------------------------------------------------------------- *)
fun rl_search_only tmpname ngen =
let
val expdir = mk_dirs ()
val _ = log ("Search " ^ its ngen)
val _ = buildheap_dir := expdir ^ "/search" ^ its ngen ^ tmpname;
val _ = mkDir_err (!buildheap_dir)
val _ = ngen_glob := ngen
val _ = buildheap_options := "--maxheap 10000"
val tnn = if ngen <= 0
then random_tnn (get_tnndim ())
else read_tnn (tnn_file (ngen - 1))
val sold = if ngen <= 0
then eempty prog_compare
else read_sold (ngen - 1)
val (progll,t) = add_time
(parmap_queue_extern ncore parspec tnn)
(List.tabulate (ntarget,I))
val _ = log ("search time: " ^ rts_round 6 t)
val _ = log ("solutions for each core:")
val _ = log (String.concatWith " " (map (its o length) progll))
val seqd = enew seq_compare (mapfilter seq_of_prog (elist sold))
fun is_new p = not (emem (seq_of_prog p) seqd)
handle Interrupt => raise Interrupt | _ => false
val newprogll = map (filter is_new) progll
val _ = log ("new solutions for each core:")
val _ = log (String.concatWith " " (map (its o length) newprogll))
val progl = mk_fast_set prog_compare (
List.concat progll @ elist sold)
val newsold = enew prog_compare (merge_sol progl)
in
write_sold ngen tmpname newsold;
stats_ngen (!buildheap_dir) ngen
end
and rl_search tmpname ngen =
(rl_search_only tmpname ngen; rl_train tmpname ngen)
and rl_train_only tmpname ngen =
let
val expdir = mk_dirs ()
val _ = log ("Train " ^ its ngen)
val _ = buildheap_dir := expdir ^ "/train" ^ its ngen ^ tmpname
val _ = mkDir_err (!buildheap_dir)
val _ = buildheap_options := "--maxheap 100000"
val _ = ngen_glob := ngen
val (_,t) = add_time (wrap_trainf ngen) tmpname
val _ = log ("train time: " ^ rts_round 6 t)
in
()
end
and rl_train tmpname ngen =
(rl_train_only tmpname ngen; rl_search tmpname (ngen + 1))
end (* struct *)
(*
-------------------------------------------------------------------------
Train oeis-synthesis
-------------------------------------------------------------------------
load "mcts"; open mcts;
expname := "run102";
time_opt := SOME 600.0;
(* use_mkl := true; *)
bloom.init_od ();
rl_search "_init6" 0;
*)
|