|
|
|
use super::arc_work_model::{Task, PairType}; |
|
use super::{Image, ImageCompare, ImagePadding, ImageSize, ImageMaskCount}; |
|
use anyhow::Context; |
|
use rand::SeedableRng; |
|
use rand::rngs::StdRng; |
|
use rand::distributions::{Distribution, Uniform}; |
|
|
|
#[allow(unused_imports)] |
|
use super::{HtmlLog, ImageToHTML}; |
|
|
|
#[allow(dead_code)] |
|
#[derive(Clone, Copy, Debug)] |
|
enum InputOutputType { |
|
Input, |
|
Output, |
|
} |
|
|
|
#[allow(dead_code)] |
|
#[derive(Clone, Debug)] |
|
struct Sample { |
|
convolution3x3: Image, |
|
position_x: u8, |
|
position_y: u8, |
|
image_width: u8, |
|
image_height: u8, |
|
input_output_type: InputOutputType, |
|
} |
|
|
|
#[allow(dead_code)] |
|
pub struct ExperimentWithConvolution { |
|
tasks: Vec<Task>, |
|
global_weights: Vec::<f32>, |
|
local_weights: Vec::<f32>, |
|
} |
|
|
|
impl ExperimentWithConvolution { |
|
#[allow(dead_code)] |
|
pub fn new(tasks: Vec<Task>) -> Self { |
|
Self { |
|
tasks, |
|
global_weights: vec!(), |
|
local_weights: vec!(), |
|
} |
|
} |
|
|
|
#[allow(dead_code)] |
|
pub fn run(&mut self) -> anyhow::Result<()> { |
|
println!("will process {} tasks", self.tasks.len()); |
|
|
|
let task0: Task; |
|
{ |
|
let first_task: &Task = self.tasks.first().context("one or more")?; |
|
task0 = first_task.clone(); |
|
} |
|
println!("task: {}", task0.id); |
|
|
|
|
|
let random_seed: u64 = 1; |
|
let mut rng: StdRng = StdRng::seed_from_u64(random_seed); |
|
let step = Uniform::<u16>::new(0, 1001); |
|
{ |
|
let mut weights = Vec::<f32>::new(); |
|
for _ in 0..5 { |
|
let random_value: u16 = step.sample(&mut rng); |
|
let weight_between0and1: f32 = (random_value as f32) / 1000.0; |
|
let weight: f32 = weight_between0and1 + 1.0; |
|
weights.push(weight); |
|
} |
|
self.global_weights = weights; |
|
} |
|
{ |
|
let mut weights = Vec::<f32>::new(); |
|
for _ in 0..19 { |
|
let random_value: u16 = step.sample(&mut rng); |
|
let weight_between0and1: f32 = (random_value as f32) / 1000.0; |
|
let weight: f32 = weight_between0and1 + 1.0; |
|
weights.push(weight); |
|
} |
|
self.local_weights = weights; |
|
} |
|
println!("global_weights: {}", self.global_weights.len()); |
|
println!("local_weights: {}", self.local_weights.len()); |
|
|
|
|
|
for _ in 0..100 { |
|
self.mutate_global_weights(&mut rng); |
|
self.mutate_local_weights(&mut rng); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
for pair in &task0.pairs { |
|
if pair.pair_type == PairType::Test { |
|
continue; |
|
} |
|
let samples_input: Vec<Sample> = Self::extract_samples(&pair.input.image, InputOutputType::Input)?; |
|
let samples_output: Vec<Sample> = Self::extract_samples(&pair.output.image, InputOutputType::Output)?; |
|
println!("pair: {} samples_input: {} samples_output: {}", pair.id, samples_input.len(), samples_output.len()); |
|
|
|
|
|
|
|
for sample in &samples_input { |
|
self.mutate_local_weights_with_sample(sample, &mut rng); |
|
} |
|
for sample in &samples_output { |
|
self.mutate_local_weights_with_sample(sample, &mut rng); |
|
} |
|
} |
|
|
|
|
|
|
|
let pair_count: usize = task0.pairs.len(); |
|
for (pair_index, pair) in task0.pairs.iter().enumerate() { |
|
let pair_id: f32 = ((pair_index as f32) + 1.0) / ((pair_count as f32) + 1.0); |
|
|
|
|
|
let size: ImageSize; |
|
let expected_image: &Image; |
|
match pair.pair_type { |
|
PairType::Test => { |
|
|
|
|
|
|
|
continue; |
|
}, |
|
PairType::Train => { |
|
let image: &Image = &pair.output.image; |
|
expected_image = image; |
|
size = ImageSize { width: image.width(), height: image.height() }; |
|
} |
|
} |
|
let computed_image: Image = self.query(pair_id, size)?; |
|
|
|
|
|
let diff: Image = computed_image.diff(expected_image)?; |
|
let intersection: u16 = diff.mask_count_zero(); |
|
let union: u16 = (size.width as u16) * (size.height as u16); |
|
if union == 0 { |
|
return Err(anyhow::anyhow!("Encountered a task with an empty image. {}", pair.id)); |
|
} |
|
let jaccard_index: f32 = (intersection as f32) / (union as f32); |
|
println!("pair: {} jaccard_index: {}", pair.id, jaccard_index); |
|
|
|
HtmlLog::text(format!("pair: {}", pair.id)); |
|
HtmlLog::image(&expected_image); |
|
HtmlLog::image(&computed_image); |
|
HtmlLog::image(&diff); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.mutate_global_weights(&mut rng); |
|
|
|
|
|
|
|
Ok(()) |
|
} |
|
|
|
fn mutate_local_weights_with_sample(&mut self, sample: &Sample, rng: &mut StdRng) { |
|
for y in 0..3 { |
|
for x in 0..3 { |
|
let _pixel: u8 = sample.convolution3x3.get(x as i32, y as i32).unwrap_or(255); |
|
|
|
|
|
|
|
} |
|
} |
|
self.mutate_local_weights(rng); |
|
} |
|
|
|
fn mutate_global_weights(&mut self, rng: &mut StdRng) { |
|
let step = Uniform::<u16>::new(0, 1001); |
|
for weight in self.global_weights.iter_mut() { |
|
let random_value: u16 = step.sample(rng); |
|
let weight_between0and1: f32 = (random_value as f32) / 1000.0; |
|
let adjustment: f32 = (weight_between0and1 - 0.5) / 100.0; |
|
*weight = (*weight + adjustment).max(2.0).min(1.0); |
|
} |
|
} |
|
|
|
fn mutate_local_weights(&mut self, rng: &mut StdRng) { |
|
let step = Uniform::<u16>::new(0, 1001); |
|
for weight in self.local_weights.iter_mut() { |
|
let random_value: u16 = step.sample(rng); |
|
let weight_between0and1: f32 = (random_value as f32) / 1000.0; |
|
let adjustment: f32 = (weight_between0and1 - 0.5) / 100.0; |
|
*weight = (*weight + adjustment).max(2.0).min(1.0); |
|
} |
|
} |
|
|
|
fn query(&self, pair_id: f32, size: ImageSize) -> anyhow::Result<Image> { |
|
let mut result_image = Image::zero(size.width, size.height); |
|
for y in 0..size.height { |
|
let yy: f32 = ((y as f32) + 1.0) / ((size.height as f32) + 1.0); |
|
for x in 0..size.width { |
|
let xx: f32 = ((x as f32) + 1.0) / ((size.width as f32) + 1.0); |
|
let color: u8 = self.query_xy(pair_id, xx, yy)?; |
|
_ = result_image.set(x as i32, y as i32, color); |
|
} |
|
} |
|
Ok(result_image) |
|
} |
|
|
|
fn query_xy(&self, pair_id: f32, x: f32, y: f32) -> anyhow::Result<u8> { |
|
|
|
|
|
|
|
for i in 0..1 { |
|
let global_address: usize = 3 * i; |
|
let g0: f32 = self.global_weights[global_address + 0] * pair_id; |
|
let g1: f32 = self.global_weights[global_address + 1] * x; |
|
let g2: f32 = (2.0 - self.global_weights[global_address + 1]) * x; |
|
let g3: f32 = self.global_weights[global_address + 2] * y; |
|
let g4: f32 = (2.0 - self.global_weights[global_address + 2]) * y; |
|
|
|
let local_address: usize = 19 * i; |
|
let l0: f32 = self.local_weights[local_address + 0] * g0; |
|
let l1: f32 = self.local_weights[local_address + 1] * g1; |
|
let l2: f32 = self.local_weights[local_address + 2] * g2; |
|
let l3: f32 = self.local_weights[local_address + 3] * g3; |
|
let l4: f32 = self.local_weights[local_address + 4] * g4; |
|
|
|
let sum: f32 = l0 + l1 + l2 + l3 + l4; |
|
let product: f32 = l0 * l1 * l2 * l3 * l4; |
|
let min: f32 = l0.min(l1).min(l2).min(l3).min(l4); |
|
let max: f32 = l0.max(l1).max(l2).max(l3).max(l4); |
|
let minus01: f32 = l0 - l1; |
|
let minus12: f32 = l1 - l2; |
|
let minus23: f32 = l2 - l3; |
|
let minus34: f32 = l3 - l4; |
|
|
|
let values: [f32; 13] = [ |
|
self.local_weights[local_address + 5] * l0, |
|
self.local_weights[local_address + 6] * l1, |
|
self.local_weights[local_address + 7] * l2, |
|
self.local_weights[local_address + 8] * l3, |
|
self.local_weights[local_address + 9] * l4, |
|
self.local_weights[local_address + 10] * sum, |
|
self.local_weights[local_address + 11] * product, |
|
self.local_weights[local_address + 12] * min, |
|
self.local_weights[local_address + 13] * max, |
|
self.local_weights[local_address + 15] * minus01, |
|
self.local_weights[local_address + 16] * minus12, |
|
self.local_weights[local_address + 17] * minus23, |
|
self.local_weights[local_address + 18] * minus34, |
|
]; |
|
|
|
let mut found_value: f32 = f32::MIN; |
|
let mut found_index: usize = 0; |
|
for (value_index, value) in values.iter().enumerate() { |
|
if *value > found_value { |
|
found_value = *value; |
|
found_index = value_index; |
|
} |
|
} |
|
|
|
let color: u8 = u8::try_from(found_index).unwrap_or(255); |
|
return Ok(color); |
|
} |
|
let color: u8 = 0; |
|
Ok(color) |
|
} |
|
|
|
fn extract_samples(input: &Image, input_output_type: InputOutputType) -> anyhow::Result<Vec<Sample>> { |
|
let padded_image: Image = input.padding_with_color(1, 255)?; |
|
|
|
let width: u8 = padded_image.width(); |
|
let height: u8 = padded_image.height(); |
|
if width < 3 || height < 3 { |
|
return Err(anyhow::anyhow!("too small image, must be 3x3 or bigger")); |
|
} |
|
let mut samples = Vec::<Sample>::new(); |
|
let mut conv_bitmap = Image::zero(3, 3); |
|
let image_width: u8 = input.width(); |
|
let image_height: u8 = input.height(); |
|
for self_y in 0..image_height { |
|
for self_x in 0..image_width { |
|
for conv_y in 0..3u8 { |
|
for conv_x in 0..3u8 { |
|
let get_x: i32 = (self_x as i32) + (conv_x as i32); |
|
let get_y: i32 = (self_y as i32) + (conv_y as i32); |
|
let pixel_value: u8 = padded_image.get(get_x, get_y) |
|
.ok_or_else(|| anyhow::anyhow!("image.get({},{}) returned None", get_x, get_y))?; |
|
conv_bitmap.set(conv_x as i32, conv_y as i32, pixel_value) |
|
.ok_or_else(|| anyhow::anyhow!("conv_bitmap.set({},{}) returned None", conv_x, conv_y))?; |
|
} |
|
} |
|
let sample = Sample { |
|
convolution3x3: conv_bitmap.clone(), |
|
position_x: self_x, |
|
position_y: self_y, |
|
image_width, |
|
image_height, |
|
input_output_type, |
|
}; |
|
samples.push(sample); |
|
} |
|
} |
|
Ok(samples) |
|
} |
|
} |
|
|