ARC-stuff / loda-rust /rust_project /loda-rust-cli /src /arc /experiment_with_convolution.rs
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
d5bfab8 verified
//! Pseudo code for a NxN convolution with weights.
use super::arc_work_model::{Task, PairType};
use super::{Image, ImageCompare, ImagePadding, ImageSize, ImageMaskCount};
use anyhow::Context;
use rand::SeedableRng;
use rand::rngs::StdRng;
use rand::distributions::{Distribution, Uniform};
#[allow(unused_imports)]
use super::{HtmlLog, ImageToHTML};
#[allow(dead_code)]
#[derive(Clone, Copy, Debug)]
enum InputOutputType {
Input,
Output,
}
#[allow(dead_code)]
#[derive(Clone, Debug)]
struct Sample {
convolution3x3: Image,
position_x: u8,
position_y: u8,
image_width: u8,
image_height: u8,
input_output_type: InputOutputType,
}
#[allow(dead_code)]
pub struct ExperimentWithConvolution {
tasks: Vec<Task>,
global_weights: Vec::<f32>,
local_weights: Vec::<f32>,
}
impl ExperimentWithConvolution {
#[allow(dead_code)]
pub fn new(tasks: Vec<Task>) -> Self {
Self {
tasks,
global_weights: vec!(),
local_weights: vec!(),
}
}
#[allow(dead_code)]
pub fn run(&mut self) -> anyhow::Result<()> {
println!("will process {} tasks", self.tasks.len());
let task0: Task;
{
let first_task: &Task = self.tasks.first().context("one or more")?;
task0 = first_task.clone();
}
println!("task: {}", task0.id);
// Random weights
let random_seed: u64 = 1;
let mut rng: StdRng = StdRng::seed_from_u64(random_seed);
let step = Uniform::<u16>::new(0, 1001);
{
let mut weights = Vec::<f32>::new();
for _ in 0..5 {
let random_value: u16 = step.sample(&mut rng);
let weight_between0and1: f32 = (random_value as f32) / 1000.0;
let weight: f32 = weight_between0and1 + 1.0;
weights.push(weight);
}
self.global_weights = weights;
}
{
let mut weights = Vec::<f32>::new();
for _ in 0..19 {
let random_value: u16 = step.sample(&mut rng);
let weight_between0and1: f32 = (random_value as f32) / 1000.0;
let weight: f32 = weight_between0and1 + 1.0;
weights.push(weight);
}
self.local_weights = weights;
}
println!("global_weights: {}", self.global_weights.len());
println!("local_weights: {}", self.local_weights.len());
// Add some junk to the initial weights
for _ in 0..100 {
self.mutate_global_weights(&mut rng);
self.mutate_local_weights(&mut rng);
}
// Extract samples
// the global weights stays locked while training for a single task
// local weights that gets updated while training with a single task
for pair in &task0.pairs {
if pair.pair_type == PairType::Test {
continue;
}
let samples_input: Vec<Sample> = Self::extract_samples(&pair.input.image, InputOutputType::Input)?;
let samples_output: Vec<Sample> = Self::extract_samples(&pair.output.image, InputOutputType::Output)?;
println!("pair: {} samples_input: {} samples_output: {}", pair.id, samples_input.len(), samples_output.len());
// mutate the local weights
// train with the samples
for sample in &samples_input {
self.mutate_local_weights_with_sample(sample, &mut rng);
}
for sample in &samples_output {
self.mutate_local_weights_with_sample(sample, &mut rng);
}
}
// query the model
let pair_count: usize = task0.pairs.len();
for (pair_index, pair) in task0.pairs.iter().enumerate() {
let pair_id: f32 = ((pair_index as f32) + 1.0) / ((pair_count as f32) + 1.0);
// println!("pair_id: {}", pair_id);
let size: ImageSize;
let expected_image: &Image;
match pair.pair_type {
PairType::Test => {
// let image: &Image = &pair.output.test_image;
// expected_image = image;
// size = ImageSize { width: image.width(), height: image.height() };
continue;
},
PairType::Train => {
let image: &Image = &pair.output.image;
expected_image = image;
size = ImageSize { width: image.width(), height: image.height() };
}
}
let computed_image: Image = self.query(pair_id, size)?;
// measure difference from expected image
let diff: Image = computed_image.diff(expected_image)?;
let intersection: u16 = diff.mask_count_zero();
let union: u16 = (size.width as u16) * (size.height as u16);
if union == 0 {
return Err(anyhow::anyhow!("Encountered a task with an empty image. {}", pair.id));
}
let jaccard_index: f32 = (intersection as f32) / (union as f32);
println!("pair: {} jaccard_index: {}", pair.id, jaccard_index);
HtmlLog::text(format!("pair: {}", pair.id));
HtmlLog::image(&expected_image);
HtmlLog::image(&computed_image);
HtmlLog::image(&diff);
}
// undo if the mutation was too poor
// the global weights stays locked while training for a single task
// local weights that gets updated while training with a single task
// mutate the global weights.
self.mutate_global_weights(&mut rng);
// repeat training
Ok(())
}
fn mutate_local_weights_with_sample(&mut self, sample: &Sample, rng: &mut StdRng) {
for y in 0..3 {
for x in 0..3 {
let _pixel: u8 = sample.convolution3x3.get(x as i32, y as i32).unwrap_or(255);
// propagate pixel value to all local weights, based on position, pair_id, input/output
// update local weights
}
}
self.mutate_local_weights(rng);
}
fn mutate_global_weights(&mut self, rng: &mut StdRng) {
let step = Uniform::<u16>::new(0, 1001);
for weight in self.global_weights.iter_mut() {
let random_value: u16 = step.sample(rng);
let weight_between0and1: f32 = (random_value as f32) / 1000.0;
let adjustment: f32 = (weight_between0and1 - 0.5) / 100.0;
*weight = (*weight + adjustment).max(2.0).min(1.0);
}
}
fn mutate_local_weights(&mut self, rng: &mut StdRng) {
let step = Uniform::<u16>::new(0, 1001);
for weight in self.local_weights.iter_mut() {
let random_value: u16 = step.sample(rng);
let weight_between0and1: f32 = (random_value as f32) / 1000.0;
let adjustment: f32 = (weight_between0and1 - 0.5) / 100.0;
*weight = (*weight + adjustment).max(2.0).min(1.0);
}
}
fn query(&self, pair_id: f32, size: ImageSize) -> anyhow::Result<Image> {
let mut result_image = Image::zero(size.width, size.height);
for y in 0..size.height {
let yy: f32 = ((y as f32) + 1.0) / ((size.height as f32) + 1.0);
for x in 0..size.width {
let xx: f32 = ((x as f32) + 1.0) / ((size.width as f32) + 1.0);
let color: u8 = self.query_xy(pair_id, xx, yy)?;
_ = result_image.set(x as i32, y as i32, color);
}
}
Ok(result_image)
}
fn query_xy(&self, pair_id: f32, x: f32, y: f32) -> anyhow::Result<u8> {
// println!("pair_id: {} x: {} y: {}", pair_id, x, y);
// Experiments with multiple iterations and passing data to the next iteration
for i in 0..1 {
let global_address: usize = 3 * i;
let g0: f32 = self.global_weights[global_address + 0] * pair_id;
let g1: f32 = self.global_weights[global_address + 1] * x;
let g2: f32 = (2.0 - self.global_weights[global_address + 1]) * x;
let g3: f32 = self.global_weights[global_address + 2] * y;
let g4: f32 = (2.0 - self.global_weights[global_address + 2]) * y;
let local_address: usize = 19 * i;
let l0: f32 = self.local_weights[local_address + 0] * g0;
let l1: f32 = self.local_weights[local_address + 1] * g1;
let l2: f32 = self.local_weights[local_address + 2] * g2;
let l3: f32 = self.local_weights[local_address + 3] * g3;
let l4: f32 = self.local_weights[local_address + 4] * g4;
let sum: f32 = l0 + l1 + l2 + l3 + l4;
let product: f32 = l0 * l1 * l2 * l3 * l4;
let min: f32 = l0.min(l1).min(l2).min(l3).min(l4);
let max: f32 = l0.max(l1).max(l2).max(l3).max(l4);
let minus01: f32 = l0 - l1;
let minus12: f32 = l1 - l2;
let minus23: f32 = l2 - l3;
let minus34: f32 = l3 - l4;
let values: [f32; 13] = [
self.local_weights[local_address + 5] * l0,
self.local_weights[local_address + 6] * l1,
self.local_weights[local_address + 7] * l2,
self.local_weights[local_address + 8] * l3,
self.local_weights[local_address + 9] * l4,
self.local_weights[local_address + 10] * sum,
self.local_weights[local_address + 11] * product,
self.local_weights[local_address + 12] * min,
self.local_weights[local_address + 13] * max,
self.local_weights[local_address + 15] * minus01,
self.local_weights[local_address + 16] * minus12,
self.local_weights[local_address + 17] * minus23,
self.local_weights[local_address + 18] * minus34,
];
let mut found_value: f32 = f32::MIN;
let mut found_index: usize = 0;
for (value_index, value) in values.iter().enumerate() {
if *value > found_value {
found_value = *value;
found_index = value_index;
}
}
// println!("pair_id: {} x: {} y: {} value: {}", pair_id, x, y, found_value);
let color: u8 = u8::try_from(found_index).unwrap_or(255);
return Ok(color);
}
let color: u8 = 0;
Ok(color)
}
fn extract_samples(input: &Image, input_output_type: InputOutputType) -> anyhow::Result<Vec<Sample>> {
let padded_image: Image = input.padding_with_color(1, 255)?;
let width: u8 = padded_image.width();
let height: u8 = padded_image.height();
if width < 3 || height < 3 {
return Err(anyhow::anyhow!("too small image, must be 3x3 or bigger"));
}
let mut samples = Vec::<Sample>::new();
let mut conv_bitmap = Image::zero(3, 3);
let image_width: u8 = input.width();
let image_height: u8 = input.height();
for self_y in 0..image_height {
for self_x in 0..image_width {
for conv_y in 0..3u8 {
for conv_x in 0..3u8 {
let get_x: i32 = (self_x as i32) + (conv_x as i32);
let get_y: i32 = (self_y as i32) + (conv_y as i32);
let pixel_value: u8 = padded_image.get(get_x, get_y)
.ok_or_else(|| anyhow::anyhow!("image.get({},{}) returned None", get_x, get_y))?;
conv_bitmap.set(conv_x as i32, conv_y as i32, pixel_value)
.ok_or_else(|| anyhow::anyhow!("conv_bitmap.set({},{}) returned None", conv_x, conv_y))?;
}
}
let sample = Sample {
convolution3x3: conv_bitmap.clone(),
position_x: self_x,
position_y: self_y,
image_width,
image_height,
input_output_type,
};
samples.push(sample);
}
}
Ok(samples)
}
}