ARC-stuff / re-arc /export.py
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
d5bfab8 verified
from main import *
import os
import json
def arc_dict_from_flat_array(tasks):
"""
Given a flat array of tasks, returns a dictionary formatted for the ARC,
with the first N-1 tasks in 'train' and the last task in 'test'.
"""
if len(tasks) > 1:
return {'train': tasks[:-1], 'test': [tasks[-1]]}
return None # Return None if not enough tasks to split
def export_easy_hard_from_dataset(
folder: str = 're_arc',
n: int = 8,
s: int = 0,
e: int = 400
) -> None:
"""
export json files with ARC file format from a generated dataset
"""
# Create directories if they don't exist
easy_dir = f'{folder}/easy'
hard_dir = f'{folder}/hard'
os.makedirs(easy_dir, exist_ok=True)
os.makedirs(hard_dir, exist_ok=True)
with open(f'{folder}/metadata.json', 'r') as fp:
metadata = json.load(fp)
for i, fn in enumerate(sorted(os.listdir(f'{folder}/tasks'))):
if s <= i < e:
key = fn[:8]
with open(f'{folder}/tasks/{key}.json', 'r') as fp:
generated_task = json.load(fp)
generated_task = [format_example(example) for example in generated_task[:10*n]]
difficulties = metadata[key]['pso_difficulties'][:9*n]
generated_task = [ex for ex, diff in sorted(zip(generated_task, difficulties), key=lambda item: item[1])]
easy = generated_task[1*n:2*n]
hard = generated_task[8*n:9*n]
# Save tasks to respective directories
easy_root_dict = arc_dict_from_flat_array(easy)
hard_root_dict = arc_dict_from_flat_array(hard)
if easy_root_dict:
with open(f'{easy_dir}/{key}.json', 'w') as ef:
json.dump(easy_root_dict, ef)
if hard_root_dict:
with open(f'{hard_dir}/{key}.json', 'w') as hf:
json.dump(hard_root_dict, hf)
export_easy_hard_from_dataset()