import os import numpy as np import json import pdb from matplotlib import pyplot as plt # from skimage.morphology import binary_dilation, binary_erosion from scipy.ndimage import binary_dilation, binary_erosion, binary_hit_or_miss import random from ListSelEm import * from Utils import Process, Change_Colour def generate_inp_out_catB_Selection(list_se, **param): """ SE0/SE1 - Hit-Or-Miss SE2/3 - Dilate (SE0) SE2/3 - Erode (SE0) SE4/5 - Dilate (SE1) SE4/5 - Erode (SE1) """ sz = np.random.randint(2, 4) # Select 1/2 pixels and dilate by SE0 base_img1 = np.zeros((param['img_size'], param['img_size']), dtype=np.int32) idx1 = np.random.randint(0, param['img_size']//2, size=sz) idx2 = np.random.randint(0, param['img_size']//2, size=sz) base_img1[idx1, idx2] = 1 base_img1 = binary_dilation(base_img1, list_se_3x3[list_se[0]]) # Select 1/2 pixels and dilate by SE1 base_img2 = np.zeros((param['img_size'], param['img_size']), dtype=np.int32) idx1 = np.random.randint(param['img_size']//2, param['img_size'], size=sz) idx2 = np.random.randint(param['img_size']//2, param['img_size'], size=sz) base_img2[idx1, idx2] = 1 base_img2 = binary_dilation(base_img2, list_se_3x3[list_se[1]]) # Combine the above images to get the base image. base_img = np.logical_or(base_img1, base_img2)*1 # Copy the base_img for input/output inp_img = np.array(base_img*1, copy=True) out_img = np.array(base_img*1, copy=True) # Next we have a hit_or_miss which selects a pixel and adds another color tmp_img = binary_hit_or_miss(out_img, list_se_3x3[list_se[0]]) out_img[tmp_img] = 2 # Add another color out_img = Process(out_img, num_colors=2) # First color will be processed differently out_img[:, :, 0] = binary_dilation(out_img[:, :, 0], list_se_3x3[list_se[2]]) out_img[:, :, 0] = binary_dilation(out_img[:, :, 0], list_se_3x3[list_se[3]]) out_img[:, :, 0] = binary_erosion(out_img[:, :, 0], list_se_3x3[list_se[2]]) out_img[:, :, 0] = binary_erosion(out_img[:, :, 0], list_se_3x3[list_se[3]]) # Second color will be processed differently out_img[:, :, 1] = binary_dilation(out_img[:, :, 1], list_se_3x3[list_se[0]]) out_img[:, :, 1] = binary_dilation(out_img[:, :, 1], list_se_3x3[list_se[4]]) out_img[:, :, 1] = binary_dilation(out_img[:, :, 1], list_se_3x3[list_se[5]]) out_img[:, :, 1] = binary_erosion(out_img[:, :, 1], list_se_3x3[list_se[4]]) out_img[:, :, 1] = binary_erosion(out_img[:, :, 1], list_se_3x3[list_se[5]]) # Resolve the color by the rule rule = np.array([[0, 0, 0], [0, 1, 2], [1, 0, 1], [1, 1, 2]], dtype=np.int32) out_img = Change_Colour(out_img, rule) return inp_img, out_img def generate_one_task_CatB_Selection(**param): """ """ k_example = 0 list_se_idx = np.random.randint(0, 8, size=6) data = [] while k_example < param['no_examples_per_task']: inp_img, out_img = generate_inp_out_catB_Selection(list_se_idx, **param) # Check if both input and output images are non-trivial FLAG = False if np.all(inp_img*1 == 1) or np.all(inp_img*1 == 0): FLAG = True elif np.all(out_img*1 == 1) or np.all(out_img*1 == 0): FLAG = True if FLAG: # If trivial regenerate the list of se's # And reset all variables!! data = [] list_se_idx = np.random.randint(0, 8, size=6) k_example = -1 else: data.append((inp_img, out_img)) # Increment k_example k_example += 1 return data, list_se_idx def write_dict_json_CatB_Selection(data, fname): """ """ dict_data = [] for (inp, out) in data: inp = [[int(y) for y in x] for x in inp] out = [[int(y) for y in x] for x in out] dict_data.append({"input": inp, "output": out}) with open(fname, "w") as f: f.write(json.dumps(dict_data)) def write_solution_CatB_Selection(list_se_idx, fname): """ """ color_rule = np.array([[0, 0, 0], [0, 1, 2], [1, 0, 1], [1, 1, 2]], dtype=np.int32) with open(fname, 'w') as f: f.write("Hit-Or-Miss SE{} \n".format(list_se_idx[0])) f.write("Band 1 - Dilation SE{} \n".format(list_se_idx[2]+1)) f.write("Band 1 - Dilation SE{} \n".format(list_se_idx[3]+1)) f.write("Band 1 - Erosion SE{} \n".format(list_se_idx[2]+1)) f.write("Band 1 - Erosion SE{} \n".format(list_se_idx[3]+1)) f.write("Band 2 - Dilation SE{} \n".format(list_se_idx[0]+1)) f.write("Band 2 - Dilation SE{} \n".format(list_se_idx[4]+1)) f.write("Band 2 - Dilation SE{} \n".format(list_se_idx[5]+1)) f.write("Band 2 - Erosion SE{} \n".format(list_se_idx[4]+1)) f.write("Band 2 - Erosion SE{} \n".format(list_se_idx[5]+1)) f.write("Color rule : {}".format(json.dumps([[int(y) for y in x] for x in color_rule]))) f.write("\n") def write_solution_CatB_Selection_json(list_se_idx, fname): """ """ color_rule = np.array([[0, 0, 0], [0, 1, 2], [1, 0, 1], [1, 1, 2]], dtype=np.int32) data = [] data.append((None, "Hit-Or-Miss", "SE{}".format(list_se_idx[0]+1))) data.append((1, "Dilation", "SE{}".format(list_se_idx[2]+1))) data.append((1, "Dilation", "SE{}".format(list_se_idx[3]+1))) data.append((1, "Erosion", "SE{}".format(list_se_idx[2]+1))) data.append((1, "Erosion", "SE{}".format(list_se_idx[3]+1))) data.append((2, "Dilation", "SE{}".format(list_se_idx[0]+1))) data.append((2, "Dilation", "SE{}".format(list_se_idx[4]+1))) data.append((2, "Dilation", "SE{}".format(list_se_idx[5]+1))) data.append((2, "Erosion", "SE{}".format(list_se_idx[4]+1))) data.append((2, "Erosion", "SE{}".format(list_se_idx[5]+1))) data.append((None, "change_color", [[int(y) for y in x] for x in color_rule])) with open(fname, "w") as f: f.write(json.dumps(data)) def generate_100_tasks_CatB_Selection(seed, **param): """ """ np.random.seed(seed) os.makedirs("./Dataset/CatB_Selection", exist_ok=True) for task_no in range(100): data, list_se_idx = generate_one_task_CatB_Selection(**param) fname = './Dataset/CatB_Selection/Task{:03d}.json'.format(task_no) write_dict_json_CatB_Selection(data, fname) fname = './Dataset/CatB_Selection/Task{:03d}_soln.txt'.format(task_no) write_solution_CatB_Selection(list_se_idx, fname) fname = './Dataset/CatB_Selection/Task{:03d}_soln.json'.format(task_no) write_solution_CatB_Selection_json(list_se_idx, fname) if __name__ == "__main__": param = {} param['img_size'] = 15 param['se_size'] = 3 # Size of the structuring element param['seq_length'] = 4 # Number of primitives would be 2*param['seq_length'] param['no_examples_per_task'] = 4 param['no_colors'] = 3 generate_100_tasks_CatB_Selection(32, **param)