import arc_json_model as ajm import numpy as np from simple_image import image_new, set_pixel, draw_rect, draw_box # ARC images are maximum 30x30. With a 1px border around, then it's the IMAGE_SIZE 32x32. IMAGE_SIZE = 32 # The color codes [0..9] are the ARC colors # Color used when expanding the input/output images to size 30x30 COLOR_OUTSIDE = 10 # Color used for a 1px wide box around the input/output images COLOR_PADDING = 11 # Color that indicates the single pixel that is to be predicted # Color that indicates the box with the prediction areas COLOR_HIGHLIGHT = 12 class ExportTaskToImage: def __init__(self, task: ajm.Task): self.task = task self.pixels = ExportTaskToImage.image_from_task(task) @classmethod def image_from_task(cls, task: ajm.Task) -> np.ndarray: # each ARC pair is IMAGE_SIZE wide # in total it's all the pairs * IMAGE_SIZE image_width = IMAGE_SIZE * len(task.pairs) # input images in the top row # output images in the bottom row # in total there are 2 rows, thus the image_height is IMAGE_SIZE * 2 image_height = IMAGE_SIZE * 2 pixels = image_new(image_width, image_height, COLOR_OUTSIDE) # copy input images for pair_index, pair in enumerate(task.pairs): for row_index, rows in enumerate(pair.input.pixels): for column_index, pixel in enumerate(rows): x = IMAGE_SIZE * pair_index + 1 + column_index y = IMAGE_SIZE * 0 + 1 + row_index set_pixel(pixels, x, y, pixel) # copy output images for pair_index, pair in enumerate(task.pairs): for row_index, rows in enumerate(pair.output.pixels): for column_index, pixel in enumerate(rows): x = IMAGE_SIZE * pair_index + 1 + column_index y = IMAGE_SIZE * 1 + 1 + row_index set_pixel(pixels, x, y, pixel) # draw boxes around images for pair_index, pair in enumerate(task.pairs): x = IMAGE_SIZE * pair_index draw_box(pixels, x, 0, IMAGE_SIZE, IMAGE_SIZE, COLOR_PADDING) draw_box(pixels, x, IMAGE_SIZE, IMAGE_SIZE, IMAGE_SIZE, COLOR_PADDING) # mask out the test output areas # and draw a highlighted box around the test output areas for pair_index, pair in enumerate(task.pairs): if pair.pair_type != ajm.PairType.TEST: continue x = IMAGE_SIZE * pair_index width = pair.output.pixels.shape[1] height = pair.output.pixels.shape[0] draw_rect(pixels, x, IMAGE_SIZE, width + 2, height + 2, COLOR_OUTSIDE) draw_box(pixels, x, IMAGE_SIZE, width + 2, height + 2, COLOR_HIGHLIGHT) return pixels def image_with_mark(self, test_index: int, x: int, y: int) -> np.ndarray: pixels = self.pixels.copy() for pair_index, pair in enumerate(self.task.pairs): if pair.pair_type != ajm.PairType.TEST: continue if pair.pair_index != test_index: continue set_x = IMAGE_SIZE * pair_index + 1 + x set_y = IMAGE_SIZE + 1 + y set_pixel(pixels, set_x, set_y, COLOR_HIGHLIGHT) return pixels if __name__ == '__main__': filename = 'testdata/af902bf9.json' task = ajm.Task.load(filename) #print(task) exporter = ExportTaskToImage(task) #print(exporter) pixels = exporter.image_with_mark(0, 3, 3) print("pixels.shape", pixels.shape)