; A051122: a(n) = Fibonacci(n) AND Fibonacci(n+1). ; Coded manually 2021-03-30 by Simon Strandgaard, https://github.com/neoneye ; 0,1,0,2,1,0,8,5,0,34,17,16,128,105,96,578,537,536,16,4165,2624,2,17697,9504,9472,65553,55808,55618,317489,299040,295432,2053,2163968,1377506,263361,8437888,6328368,5247017,38010912,33623682,1576009,165153832 add $0,1 mov $5,$0 seq $5,45 ; Fibonacci ; Now $5 holds Fibonacci(n+1). sub $0,1 seq $0,45 ; Fibonacci ; Now $0 holds Fibonacci(n). ; Determine the number of times to loop mov $2,$5 seq $2,70939 ; Length of binary representation of Fibonacci(n+1). mov $4,1 ; Inital scale factor lpb $2 ; Do AND with the lowest bit mov $3,$0 mul $3,$5 mod $3,2 ; Now $3 holds the bitwise AND with $0 and $5 ; Scale up the bit, and add to result mul $3,$4 add $1,$3 div $0,2 ; Remove the lowest bit from Fibonacci(n) div $5,2 ; Remove the lowest bit from Fibonacci(n+1) mul $4,2 ; Double the scale factor. Example: 1,2,4,8,16,32 sub $2,1 lpe mov $0,$1