use super::{AnalyticsDirectory, BatchProgramAnalyzerPlugin, BatchProgramAnalyzerContext}; use crate::common::create_csv_file; use crate::common::RecordBigram; use crate::common::RecordTrigram; use crate::common::RecordSkipgram; use crate::common::RecordUnigram; use loda_rust_core; use loda_rust_core::parser::{InstructionParameter, ParsedProgram}; use std::path::PathBuf; use std::error::Error; use std::collections::HashMap; type HistogramBigramKey = (String,String); type HistogramTrigramKey = (String,String,String); type HistogramSkipgramKey = (String,String); /// Creates [N-gram] csv files with LODA target parameters. /// /// Traverses all the programs inside the `loda-programs/oeis` dir. /// It looks for all the LODA assembly programs there are. /// Determines the most frequent combinations of target parameters. /// /// --- /// /// This outputs a `histogram_target_unigram.csv` file, with this format: /// /// ```csv /// count;word /// 374735;$0 /// 219113;$1 /// 175935;$2 /// 126541;$3 /// 101736;STOP /// 101736;START /// 72110;NONE /// 69648;$4 /// ``` /// /// Learnings from this unigram with LODA programs: /// /// Learning A: Target register `$0` is by far the most used. /// /// Learning B: Target register `$1` and `$2` is on a shared 2nd place. /// /// Learning C: Target register `NONE` is for the `lpe` instruction, that doesn't have any register. /// /// --- /// /// This outputs a `histogram_target_bigram.csv` file, with this format: /// /// ```csv /// count;word0;word1 /// 166137;$0;$0 /// 100158;$0;STOP /// 83136;$1;$1 /// 68268;$2;$2 /// 57590;$3;$3 /// 56872;$1;$0 /// 47892;$0;$1 /// 47443;NONE;$0 /// 42897;START;$0 /// 35321;START;$1 /// 34262;$1;$2 /// ``` /// /// Learnings from this bigram with LODA programs: /// /// Learning A: Target register `$0` is most likely to be followed by another `$0` target register. /// /// Learning B: Target register `$1` is most likely to be followed by another `$1` target register. /// /// Learning C: Target register `$2` is most likely to be followed by another `$2` target register. /// /// Learning D: The program is most likely to start with a `$0` target register. /// /// Learning E: The program is most likely to stop with a `$0` target register. /// /// --- /// /// This outputs a `histogram_target_trigram.csv` file, with this format: /// /// ```csv /// count;word0;word1;word2 /// 64171;$0;$0;$0 /// 52591;$0;$0;STOP /// 31892;$1;$1;$1 /// 29623;$1;$1;$0 /// 28649;NONE;$0;STOP /// 27618;$1;$0;$0 /// 26024;$3;$3;$3 /// 25285;$2;$2;$2 /// 24374;START;$0;$0 /// ``` /// /// Learnings from this trigram with LODA programs: /// /// Learning A: Target register `$0` and `$0` is usually followed by a `$0` target register. /// /// Learning B: Target register `$1` and `$1` is usually followed by a `$1` target register. /// /// Learning C: Target register `$0` and `$0` is often the last two target registers in a program. /// /// --- /// /// This outputs a `histogram_target_skipgram.csv` file, with this format: /// /// ```csv /// count;word0;word2 /// 82135;$0;$0 /// 79498;$1;$0 /// 53440;$0;STOP /// 46047;$2;$0 /// 44468;START;$0 /// 43954;$0;$1 /// 41945;$1;$1 /// 40304;$0;$2 /// ``` /// /// Learnings from this skipgram with LODA programs: /// /// Learning A: The `$0` and some junk is usually followed by another `$0` target register. /// /// Learning B: The `$1` and some junk is usually followed by a `$0` target register. /// /// Learning C: The `$0` and some junk is usually followed by the end of the program. /// /// [N-gram]: pub struct AnalyzeTargetNgram { analytics_directory: AnalyticsDirectory, histogram_unigram: HashMap, histogram_bigram: HashMap, histogram_trigram: HashMap, histogram_skipgram: HashMap, } impl AnalyzeTargetNgram { pub fn new(analytics_directory: AnalyticsDirectory) -> Self { Self { analytics_directory, histogram_unigram: HashMap::new(), histogram_bigram: HashMap::new(), histogram_trigram: HashMap::new(), histogram_skipgram: HashMap::new(), } } fn extract_words(parsed_program: &ParsedProgram) -> Vec { let mut words: Vec = vec!(); words.push("START".to_string()); for instruction in &parsed_program.instruction_vec { if instruction.parameter_vec.len() < 1 { words.push("NONE".to_string()); continue; } let parameter: &InstructionParameter = &instruction.parameter_vec[0]; words.push(parameter.to_string()); } words.push("STOP".to_string()); words } fn populate_unigram(&mut self, words: &Vec) { let keys: Vec = words.clone(); for key in keys { let counter = self.histogram_unigram.entry(key).or_insert(0); *counter += 1; } } fn populate_bigram(&mut self, words: &Vec) { let mut keys = Vec::::new(); let mut prev_word = String::new(); for (index, word1) in words.iter().enumerate() { let word0: String = prev_word; prev_word = word1.clone(); if index == 0 { continue; } let key: HistogramBigramKey = (word0, word1.clone()); keys.push(key); } for key in keys { let counter = self.histogram_bigram.entry(key).or_insert(0); *counter += 1; } } fn populate_trigram(&mut self, words: &Vec) { let mut keys = Vec::::new(); let mut prev_prev_word = String::new(); let mut prev_word = String::new(); for (index, word2) in words.iter().enumerate() { let word0: String = prev_prev_word; let word1: String = prev_word.clone(); prev_prev_word = prev_word; prev_word = word2.clone(); if index < 2 { continue; } let key: HistogramTrigramKey = (word0, word1, word2.clone()); keys.push(key); } for key in keys { let counter = self.histogram_trigram.entry(key).or_insert(0); *counter += 1; } } fn populate_skipgram(&mut self, words: &Vec) { let mut keys = Vec::::new(); let mut prev_prev_word = String::new(); let mut prev_word = String::new(); for (index, word2) in words.iter().enumerate() { let word0: String = prev_prev_word; prev_prev_word = prev_word; prev_word = word2.clone(); if index < 2 { continue; } let key: HistogramSkipgramKey = (word0, word2.clone()); keys.push(key); } for key in keys { let counter = self.histogram_skipgram.entry(key).or_insert(0); *counter += 1; } } fn save_unigram(&self) -> Result<(), Box> { // Convert from dictionary to array let mut records = Vec::::new(); for (histogram_key, histogram_count) in &self.histogram_unigram { let record = RecordUnigram { count: *histogram_count, word: histogram_key.clone(), }; records.push(record); } // Move the most frequently occuring items to the top // Move the lesser used items to the bottom records.sort_unstable_by_key(|item| (item.count, item.word.clone())); records.reverse(); // Save as a CSV file let output_path: PathBuf = self.analytics_directory.histogram_target_unigram_file(); create_csv_file(&records, &output_path) } fn save_bigram(&self) -> Result<(), Box> { // Convert from dictionary to array let mut records = Vec::::new(); for (histogram_key, histogram_count) in &self.histogram_bigram { let record = RecordBigram { count: *histogram_count, word0: histogram_key.0.clone(), word1: histogram_key.1.clone() }; records.push(record); } // Move the most frequently occuring items to the top // Move the lesser used items to the bottom records.sort_unstable_by_key(|item| (item.count, item.word0.clone(), item.word1.clone())); records.reverse(); // Save as a CSV file let output_path: PathBuf = self.analytics_directory.histogram_target_bigram_file(); create_csv_file(&records, &output_path) } fn save_trigram(&self) -> Result<(), Box> { // Convert from dictionary to array let mut records = Vec::::new(); for (histogram_key, histogram_count) in &self.histogram_trigram { let record = RecordTrigram { count: *histogram_count, word0: histogram_key.0.clone(), word1: histogram_key.1.clone(), word2: histogram_key.2.clone() }; records.push(record); } // Move the most frequently occuring items to the top // Move the lesser used items to the bottom records.sort_unstable_by_key(|item| (item.count, item.word0.clone(), item.word1.clone(), item.word2.clone())); records.reverse(); // Save as a CSV file let output_path: PathBuf = self.analytics_directory.histogram_target_trigram_file(); create_csv_file(&records, &output_path) } fn save_skipgram(&self) -> Result<(), Box> { // Convert from dictionary to array let mut records = Vec::::new(); for (histogram_key, histogram_count) in &self.histogram_skipgram { let record = RecordSkipgram { count: *histogram_count, word0: histogram_key.0.clone(), word2: histogram_key.1.clone() }; records.push(record); } // Move the most frequently occuring items to the top // Move the lesser used items to the bottom records.sort_unstable_by_key(|item| (item.count, item.word0.clone(), item.word2.clone())); records.reverse(); // Save as a CSV file let output_path: PathBuf = self.analytics_directory.histogram_target_skipgram_file(); create_csv_file(&records, &output_path) } } impl BatchProgramAnalyzerPlugin for AnalyzeTargetNgram { fn plugin_name(&self) -> &'static str { "AnalyzeTargetNgram" } fn analyze(&mut self, context: &BatchProgramAnalyzerContext) -> Result<(), Box> { let words: Vec = Self::extract_words(&context.parsed_program); self.populate_unigram(&words); self.populate_bigram(&words); self.populate_trigram(&words); self.populate_skipgram(&words); Ok(()) } fn save(&self) -> Result<(), Box> { self.save_unigram()?; self.save_bigram()?; self.save_trigram()?; self.save_skipgram()?; Ok(()) } fn human_readable_summary(&self) -> String { let rows: Vec = vec![ format!("unigram: {:?}", self.histogram_unigram.len()), format!("bigram: {:?}", self.histogram_bigram.len()), format!("trigram: {:?}", self.histogram_trigram.len()), format!("skipgram: {:?}", self.histogram_skipgram.len()), ]; rows.join(", ") } }