//! Cellular automaton - dataset for curriculum learning with increasing complexity. //! //! This dataset is available here: //! https://huggingface.co/datasets/neoneye/gameoflife-v1 //! //! Future experiments: //! Use different symbols than only . and *. //! Use different separator characters. Currently no separator is used. //! Detect of what symbols are being used, so it writes that: dead=., alive=*, separator=none. //! Do more prediction steps. Currently only 1 or 2 steps are being used. //! //! Game of life: check for oscillators //! Game of life: recognize shapes. use super::{CellularAutomaton, cellular_automaton::rule}; use super::{Image, ImageSize, RandomImage, ImageMaskCount, ImageHistogram}; use super::HtmlLog; use bloomfilter::*; use rand::rngs::StdRng; use rand::SeedableRng; use rand::seq::SliceRandom; use serde::Serialize; use std::io::Write; #[allow(dead_code)] #[derive(Debug, Clone, Copy, Serialize)] enum Curriculum { // Easy StepOneSizeSmall, StepOneSizeSmallMedium, StepOneSizeSmallMediumBig, // Hard StepTwoSizeSmall, StepOneTwoSizeSmall, StepTwoSizeSmallMedium, StepOneTwoSizeSmallMedium, StepTwoSizeSmallMediumBig, StepOneTwoSizeSmallMediumBig, } #[allow(dead_code)] #[derive(Debug, Serialize)] struct DatasetItem { curriculum: Curriculum, text: String, } #[allow(dead_code)] #[derive(Debug, Clone, Copy)] enum Strategy { DoNothing, ServiettesOneStep, ServiettesTwoSteps, HighLifeOneStep, HighLifeTwoSteps, } struct GenerateDataset { // bloom is for preventing duplicates bloom: Bloom, dataset_items: Vec, } impl GenerateDataset { #[allow(dead_code)] fn new() -> Self { let bloom_items_count = 100000; let false_positive_rate = 0.01; Self { bloom: Bloom::::new_for_fp_rate(bloom_items_count, false_positive_rate), dataset_items: vec!(), } } #[allow(dead_code)] fn populate(&mut self, curriculum: Curriculum, number_of_items: u32, print_to_htmllog: bool) -> anyhow::Result<()> { // Prevent too many DatasetItem's with both outputs are all empty let max_items_where_both_outputs_all_empty: usize = ((number_of_items as usize) * 5) / 100; let step_counts: Vec = match curriculum { Curriculum::StepOneSizeSmall => vec![1], Curriculum::StepOneSizeSmallMedium => vec![1], Curriculum::StepOneSizeSmallMediumBig => vec![1], Curriculum::StepTwoSizeSmall => vec![2], Curriculum::StepOneTwoSizeSmall => vec![1, 2], Curriculum::StepTwoSizeSmallMedium => vec![2], Curriculum::StepOneTwoSizeSmallMedium => vec![1, 2], Curriculum::StepTwoSizeSmallMediumBig => vec![2], Curriculum::StepOneTwoSizeSmallMediumBig => vec![1, 2], }; let random_seed: u64 = match curriculum { Curriculum::StepOneSizeSmall => 0, Curriculum::StepOneSizeSmallMedium => 1000000, Curriculum::StepOneSizeSmallMediumBig => 2000000, Curriculum::StepTwoSizeSmall => 3000000, Curriculum::StepOneTwoSizeSmall => 4000000, Curriculum::StepTwoSizeSmallMedium => 5000000, Curriculum::StepOneTwoSizeSmallMedium => 6000000, Curriculum::StepTwoSizeSmallMediumBig => 7000000, Curriculum::StepOneTwoSizeSmallMediumBig => 8000000, }; let sizes: Vec = match curriculum { Curriculum::StepOneSizeSmall => vec![3, 4, 5, 6], Curriculum::StepOneSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10], Curriculum::StepOneSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], Curriculum::StepTwoSizeSmall => vec![3, 4, 5, 6], Curriculum::StepOneTwoSizeSmall => vec![3, 4, 5, 6], Curriculum::StepTwoSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10], Curriculum::StepOneTwoSizeSmallMedium => vec![3, 4, 5, 6, 7, 8, 9, 10], Curriculum::StepTwoSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], Curriculum::StepOneTwoSizeSmallMediumBig => vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], }; let temperatures: [u8; 9] = [ 10, 20, 30, 40, 50, 60, 70, 80, 90 ]; let strategies: [Strategy; 5] = [ Strategy::DoNothing, Strategy::ServiettesOneStep, Strategy::ServiettesTwoSteps, Strategy::HighLifeOneStep, Strategy::HighLifeTwoSteps, ]; let mut count_input_all_empty: usize = 0; let mut count_input_all_alive: usize = 0; let mut count_input_one_cell_empty: usize = 0; let mut count_input_one_cell_alive: usize = 0; let mut count_both_outputs_all_empty: usize = 0; let upper_bound: u64 = (number_of_items * 4) as u64; let mut number_of_items_created: u32 = 0; for i in 0..upper_bound { if number_of_items_created >= number_of_items { break; } let mut rng = StdRng::seed_from_u64(random_seed + i); let step_count: u8 = *step_counts.choose(&mut rng).unwrap(); let width: u8 = *sizes.choose(&mut rng).unwrap(); let height: u8 = *sizes.choose(&mut rng).unwrap(); let temperature: u8 = *temperatures.choose(&mut rng).unwrap(); let strategy: Strategy = *strategies.choose(&mut rng).unwrap(); let size = ImageSize::new(width, height); let mut input: Image = RandomImage::two_colors(&mut rng, size, 0, 1, temperature)?; // Mutate the input image, to get different distributions match strategy { Strategy::DoNothing => {}, Strategy::HighLifeOneStep => { let mut ca: CellularAutomaton<_> = CellularAutomaton::::with_image(&input, None); ca.step(1); input = ca.image().clone(); }, Strategy::HighLifeTwoSteps => { let mut ca: CellularAutomaton<_> = CellularAutomaton::::with_image(&input, None); ca.step(2); input = ca.image().clone(); }, Strategy::ServiettesOneStep => { let mut ca: CellularAutomaton<_> = CellularAutomaton::::with_image(&input, None); ca.step(1); input = ca.image().clone(); }, Strategy::ServiettesTwoSteps => { let mut ca: CellularAutomaton<_> = CellularAutomaton::::with_image(&input, None); ca.step(2); input = ca.image().clone(); }, } let (input_count0, input_count1, _count_other) = input.mask_count(); let is_input_all_empty: bool = input_count1 == 0; let is_input_all_alive: bool = input_count0 == 0; let is_input_one_cell_empty: bool = input_count0 == 1; let is_input_one_cell_alive: bool = input_count1 == 1; if is_input_all_empty { count_input_all_empty += 1; if count_input_all_empty > 3 { debug!("ignoring input with all empty"); continue; } } if is_input_all_alive { count_input_all_alive += 1; if count_input_all_alive > 3 { debug!("ignoring input with all alive"); continue; } } if is_input_one_cell_empty { count_input_one_cell_empty += 1; if count_input_one_cell_empty > 3 { debug!("ignoring input with one cell empty"); continue; } } if is_input_one_cell_alive { count_input_one_cell_alive += 1; if count_input_one_cell_alive > 3 { debug!("ignoring input with one cell alive"); continue; } } if self.bloom.check(&input) { debug!("skipping duplicate"); continue; } self.bloom.set(&input); let mut ca_nowrap: CellularAutomaton<_> = CellularAutomaton::::with_image(&input, Some(0)); ca_nowrap.step(step_count); let output_without_wrap: Image = ca_nowrap.image().clone(); let mut ca_wrap: CellularAutomaton<_> = CellularAutomaton::::with_image(&input, None); ca_wrap.step(step_count); let output_with_wrap: Image = ca_wrap.image().clone(); let same_output_for_wrap_and_nowrap: bool = output_without_wrap == output_with_wrap; if same_output_for_wrap_and_nowrap { if output_without_wrap.mask_count_nonzero() == 0 { count_both_outputs_all_empty += 1; if count_both_outputs_all_empty > max_items_where_both_outputs_all_empty { debug!("ignoring dataset item where both outputs are all empty"); continue; } } } let mut markdown = String::new(); markdown.push_str("# Conway's Game of Life\n\n"); if step_count == 1 { markdown.push_str("Perform 1 step.\n\n"); } else { markdown.push_str(&format!("Perform {} steps.\n\n", step_count)); } markdown.push_str("## Input\n\n"); markdown.push_str(&Self::image_to_markdown_fenced_code_block(&input)); markdown.push_str("\n\n"); Self::caption_for_input_output_image(&mut markdown, &input); markdown.push_str("\n"); markdown.push_str("## Output without wrap\n\n"); markdown.push_str(&Self::image_to_markdown_fenced_code_block(&output_without_wrap)); markdown.push_str("\n\n"); Self::caption_for_input_output_image(&mut markdown, &output_without_wrap); Self::caption_for_output_compared_to_input(&mut markdown, &output_without_wrap, &input, step_count); markdown.push_str("\n"); markdown.push_str("## Output with wrap\n\n"); markdown.push_str(&Self::image_to_markdown_fenced_code_block(&output_with_wrap)); markdown.push_str("\n\n"); Self::caption_for_input_output_image(&mut markdown, &output_with_wrap); Self::caption_for_output_compared_to_input(&mut markdown, &output_with_wrap, &input, step_count); markdown.push_str("\n"); markdown.push_str("## Status\n\n"); if same_output_for_wrap_and_nowrap { markdown.push_str("The outputs are identical."); } else { markdown.push_str("The outputs are different."); } if print_to_htmllog { let compare_images: Vec = vec![ input.clone(), output_without_wrap.clone(), output_with_wrap.clone(), ]; // if same_output_for_wrap_and_nowrap { // HtmlLog::text("wrap is identical to nowrap"); // } else { // HtmlLog::text("wrap is different than nowrap"); // } HtmlLog::text(markdown.clone()); HtmlLog::compare_images(compare_images); } let dataset_item = DatasetItem { curriculum, text: markdown, }; self.dataset_items.push(dataset_item); number_of_items_created += 1; } debug!("count_both_outputs_all_empty: {}", count_both_outputs_all_empty); Ok(()) } fn caption_for_input_output_image(markdown: &mut String, image: &Image) { let (count_empty, count_alive, _count_other) = image.mask_count(); if count_alive == 0 { markdown.push_str("All cells are empty.\n"); } if count_empty == 0 { markdown.push_str("All cells are alive.\n"); } if count_alive == 1 { markdown.push_str("Only one cell is alive.\n"); } if count_empty == 1 { markdown.push_str("Only one cell is empty.\n"); } if count_alive > 0 && count_empty > 0 { if image.is_repeated_row().unwrap_or(false) { markdown.push_str("The rows are identical.\n"); } if image.is_repeated_column().unwrap_or(false) { markdown.push_str("The columns are identical.\n"); } } } fn caption_for_output_compared_to_input(markdown: &mut String, output: &Image, input: &Image, step_count: u8) { if output == input { markdown.push_str("This output is identical to the input.\n"); let (count0, count1, _count_other) = input.mask_count(); if count0 > 0 && count1 > 0 && step_count == 1 { markdown.push_str("Still life.\n"); } } else { markdown.push_str("This output is different than the input.\n"); } } fn image_to_markdown_fenced_code_block(image: &Image) -> String { format!("```\n{}\n```", GenerateDataset::image_to_string(image)) } fn image_to_string(image: &Image) -> String { let mut result = String::new(); for y in 0..image.height() { if y > 0 { result.push('\n'); } for x in 0..image.width() { let value: u8 = image.get(x as i32, y as i32).unwrap_or(0); let character: char = match value { 0 => '.', 1 => '*', _ => '?', }; result.push(character); } } result } fn dataset_to_jsonl(dataset_items: &Vec) -> anyhow::Result { let mut jsonl_rows = Vec::::new(); for dataset_item in dataset_items { let jsonl_row: String = serde_json::to_string(dataset_item)?; jsonl_rows.push(jsonl_row); } let jsonl_data: String = jsonl_rows.join("\n"); Ok(jsonl_data) } #[allow(dead_code)] fn shuffle(&mut self) { let mut rng = StdRng::seed_from_u64(0); self.dataset_items.shuffle(&mut rng); } #[allow(dead_code)] fn save(&self, path: &std::path::Path) -> anyhow::Result<()> { let s: String = Self::dataset_to_jsonl(&self.dataset_items)?; println!("dataset number of rows: {}", self.dataset_items.len()); println!("dataset jsonl bytes: {}", s.len()); let mut file = std::fs::File::create(path)?; file.write_all(s.as_bytes())?; Ok(()) } } #[cfg(test)] mod tests { use super::*; use crate::arc::ImageTryCreate; use std::path::PathBuf; #[test] fn test_10000_image_to_string() { // Arrange let pixels: Vec = vec![ 1, 0, 0, 0, 1, 1, 1, 1, 255, ]; let input: Image = Image::try_create(3, 3, pixels).expect("image"); // Act let actual: String = GenerateDataset::image_to_string(&input); // Assert assert_eq!(actual, "*..\n.**\n**?"); } #[allow(dead_code)] // #[test] fn test_20000_generate_and_save() { let path: PathBuf = PathBuf::from("/Users/neoneye/Downloads/gameoflife.jsonl"); let mut generator = GenerateDataset::new(); let number_of_items: u32 = 4700; generator.populate(Curriculum::StepOneSizeSmall, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepOneSizeSmallMedium, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepOneSizeSmallMediumBig, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepTwoSizeSmall, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepOneTwoSizeSmall, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepTwoSizeSmallMedium, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepOneTwoSizeSmallMedium, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepTwoSizeSmallMediumBig, number_of_items, false).expect("ok"); generator.populate(Curriculum::StepOneTwoSizeSmallMediumBig, number_of_items, false).expect("ok"); generator.shuffle(); generator.save(&path).expect("ok"); } #[allow(dead_code)] // #[test] fn test_20001_do_something() { for i in 0..20u64 { let size = ImageSize::new(10, 8); let step0: Image = RandomImage::two_colors(&mut StdRng::seed_from_u64(i), size, 0, 1, 35).expect("ok"); let step1: Image = RandomImage::draw_dots(&mut StdRng::seed_from_u64(i+5), &step0, 2, 5).expect("ok"); let step2: Image = RandomImage::draw_dots(&mut StdRng::seed_from_u64(i+8), &step1, 3, 5).expect("ok"); let mut images = Vec::::new(); images.push(step2.clone()); let mut ca: CellularAutomaton<_> = CellularAutomaton::::with_image(&step0, None); for _ in 0..4 { ca.step_once(); images.push(ca.image().clone()); } HtmlLog::compare_images(images); } } }